Numerical Solutions of Differential Equations using Artificial Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/13793 |
Resumo: | In this article, we study a way to numerically solve differential equations using neural networks. Basically, we rewrite the differential equation as an optimization problem, where the parameters related to the neural network are optimized. The proposal of this work constitutes a variation of the formulation introduced by Lagaris et al. [1], differing mainly in the form of the construction of the approximate solution. Although we only deal with first and second order ordinary differential equations, the numerical results show the efficiency of the proposed method. Furthermore, this method has a great potential, due to the amount of differential operators and applications in which it can be used. |
id |
FURG-7_ffd17efbf17ce47be76064788c9c4994 |
---|---|
oai_identifier_str |
oai:periodicos.furg.br:article/13793 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Numerical Solutions of Differential Equations using Artificial Neural NetworksSoluções Numéricas de Equações Diferenciais com Redes Neurais ArtificiaisNeural networksDifferential equationsOptimizationRedes neuraisEquações diferenciaisOtimizaçãoIn this article, we study a way to numerically solve differential equations using neural networks. Basically, we rewrite the differential equation as an optimization problem, where the parameters related to the neural network are optimized. The proposal of this work constitutes a variation of the formulation introduced by Lagaris et al. [1], differing mainly in the form of the construction of the approximate solution. Although we only deal with first and second order ordinary differential equations, the numerical results show the efficiency of the proposed method. Furthermore, this method has a great potential, due to the amount of differential operators and applications in which it can be used.Neste artigo, vamos estudar uma forma de resolver numericamente equações diferenciais utilizando redes neurais. Basicamente, reescrevemos a equação diferencial como um problema de otimização, onde os parâmetros associados à rede neural são otimizados. A proposta deste trabalho apresentada aqui constitui uma variação da formulação introduzida por Lagaris et al. [1], diferenciando-se principalmente na forma de construção da solução aproximada. Apesar de lidarmos apenas com equações diferenciais ordinárias de primeira e segunda ordens, os resultados numéricos mostram a eficiência do método proposto. Além disso, ele possui bastante potencial, devido a quantidade de equações diferenciais e aplicações nas quais ele pode ser utilizado.Universidade Federal do Rio Grande2021-12-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1379310.14295/vetor.v31i2.13793VETOR - Journal of Exact Sciences and Engineering; Vol. 31 No. 2 (2021); 2-13VETOR - Revista de Ciências Exatas e Engenharias; v. 31 n. 2 (2021); 2-132358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/13793/9138Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessAroztegui, José MiguelMachado, Thiago José2021-12-17T12:22:06Zoai:periodicos.furg.br:article/13793Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2021-12-17T12:22:06Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Numerical Solutions of Differential Equations using Artificial Neural Networks Soluções Numéricas de Equações Diferenciais com Redes Neurais Artificiais |
title |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
spellingShingle |
Numerical Solutions of Differential Equations using Artificial Neural Networks Aroztegui, José Miguel Neural networks Differential equations Optimization Redes neurais Equações diferenciais Otimização |
title_short |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
title_full |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
title_fullStr |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
title_full_unstemmed |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
title_sort |
Numerical Solutions of Differential Equations using Artificial Neural Networks |
author |
Aroztegui, José Miguel |
author_facet |
Aroztegui, José Miguel Machado, Thiago José |
author_role |
author |
author2 |
Machado, Thiago José |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Aroztegui, José Miguel Machado, Thiago José |
dc.subject.por.fl_str_mv |
Neural networks Differential equations Optimization Redes neurais Equações diferenciais Otimização |
topic |
Neural networks Differential equations Optimization Redes neurais Equações diferenciais Otimização |
description |
In this article, we study a way to numerically solve differential equations using neural networks. Basically, we rewrite the differential equation as an optimization problem, where the parameters related to the neural network are optimized. The proposal of this work constitutes a variation of the formulation introduced by Lagaris et al. [1], differing mainly in the form of the construction of the approximate solution. Although we only deal with first and second order ordinary differential equations, the numerical results show the efficiency of the proposed method. Furthermore, this method has a great potential, due to the amount of differential operators and applications in which it can be used. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/13793 10.14295/vetor.v31i2.13793 |
url |
https://periodicos.furg.br/vetor/article/view/13793 |
identifier_str_mv |
10.14295/vetor.v31i2.13793 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/13793/9138 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 31 No. 2 (2021); 2-13 VETOR - Revista de Ciências Exatas e Engenharias; v. 31 n. 2 (2021); 2-13 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041760344473600 |