Computational statistical analysis of the wind and solar potential for electricity generation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FURG (RI FURG) |
Texto Completo: | http://repositorio.furg.br/handle/1/7072 |
Resumo: | This paper describes an application developed through scientific project initiation. The purpose is to provide information to assess the energy potential of renewable energy such as wind and solar radiation. The information submitted by the program is obtained from weather stations that collect data on temperature, wind speed and intensity of solar radiation. The data are processed using statistical techniques that allow summarizing a large volume of measurements. The result is information presented in tables, graphs and reports, which measure the energy output of these alternative sources in electricity generation. |
id |
FURG_a24087b371c4adc867be406b8504810c |
---|---|
oai_identifier_str |
oai:repositorio.furg.br:1/7072 |
network_acronym_str |
FURG |
network_name_str |
Repositório Institucional da FURG (RI FURG) |
repository_id_str |
|
spelling |
Computational statistical analysis of the wind and solar potential for electricity generationRenewableEnergyElectricityThis paper describes an application developed through scientific project initiation. The purpose is to provide information to assess the energy potential of renewable energy such as wind and solar radiation. The information submitted by the program is obtained from weather stations that collect data on temperature, wind speed and intensity of solar radiation. The data are processed using statistical techniques that allow summarizing a large volume of measurements. The result is information presented in tables, graphs and reports, which measure the energy output of these alternative sources in electricity generation.EDGRAF2017-02-13T20:26:31Z2017-02-13T20:26:31Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, Ricardo Ezequiel; FAGUNDES, Regiane Slongo; FERRUZZIi, Yurri. Computational statistical analysis of the wind and solar potential for electricity generation. Vetor, v. 20, n. 2, p. 82-91, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/2067>. Acesso em: 12 dez. 2016.2358-3452http://repositorio.furg.br/handle/1/7072engSilva, Ricardo EzequielFagundes, Regiane SlongoFerruzzi, Yurriinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURG2017-02-13T20:26:31Zoai:repositorio.furg.br:1/7072Repositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestopendoar:2017-02-13T20:26:31Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Computational statistical analysis of the wind and solar potential for electricity generation |
title |
Computational statistical analysis of the wind and solar potential for electricity generation |
spellingShingle |
Computational statistical analysis of the wind and solar potential for electricity generation Silva, Ricardo Ezequiel Renewable Energy Electricity |
title_short |
Computational statistical analysis of the wind and solar potential for electricity generation |
title_full |
Computational statistical analysis of the wind and solar potential for electricity generation |
title_fullStr |
Computational statistical analysis of the wind and solar potential for electricity generation |
title_full_unstemmed |
Computational statistical analysis of the wind and solar potential for electricity generation |
title_sort |
Computational statistical analysis of the wind and solar potential for electricity generation |
author |
Silva, Ricardo Ezequiel |
author_facet |
Silva, Ricardo Ezequiel Fagundes, Regiane Slongo Ferruzzi, Yurri |
author_role |
author |
author2 |
Fagundes, Regiane Slongo Ferruzzi, Yurri |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Ricardo Ezequiel Fagundes, Regiane Slongo Ferruzzi, Yurri |
dc.subject.por.fl_str_mv |
Renewable Energy Electricity |
topic |
Renewable Energy Electricity |
description |
This paper describes an application developed through scientific project initiation. The purpose is to provide information to assess the energy potential of renewable energy such as wind and solar radiation. The information submitted by the program is obtained from weather stations that collect data on temperature, wind speed and intensity of solar radiation. The data are processed using statistical techniques that allow summarizing a large volume of measurements. The result is information presented in tables, graphs and reports, which measure the energy output of these alternative sources in electricity generation. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2017-02-13T20:26:31Z 2017-02-13T20:26:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, Ricardo Ezequiel; FAGUNDES, Regiane Slongo; FERRUZZIi, Yurri. Computational statistical analysis of the wind and solar potential for electricity generation. Vetor, v. 20, n. 2, p. 82-91, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/2067>. Acesso em: 12 dez. 2016. 2358-3452 http://repositorio.furg.br/handle/1/7072 |
identifier_str_mv |
SILVA, Ricardo Ezequiel; FAGUNDES, Regiane Slongo; FERRUZZIi, Yurri. Computational statistical analysis of the wind and solar potential for electricity generation. Vetor, v. 20, n. 2, p. 82-91, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/2067>. Acesso em: 12 dez. 2016. 2358-3452 |
url |
http://repositorio.furg.br/handle/1/7072 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDGRAF |
publisher.none.fl_str_mv |
EDGRAF |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FURG (RI FURG) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Repositório Institucional da FURG (RI FURG) |
collection |
Repositório Institucional da FURG (RI FURG) |
repository.name.fl_str_mv |
Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
|
_version_ |
1813187267359932416 |