Seed germination and physiological responses of quinoa to selenium priming under drought stress
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bragantia |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052022000100206 |
Resumo: | ABSTRACT The early stages of quinoa germination are sensitive to drought stress. For this purpose, a study entitled the effect of selenium in different concentrations on germination characteristics and some antioxidant enzymes of quinoa under drought stress conditions with polyethylene glycol (PEG 6000) was investigated. The first experimental factor was seed priming with selenium (from two sources: sodium selenate and selenium nanoparticles: SeNPs ? 33.4 nm) at 0.5, 1.5, 3, 4.5, 6 mg·L?1 concentrations, besides, no priming treatment was used as control. The second factor was drought stress with PEG 6000 in concentrations 0, –0.4, –0.8, and –1.2 MPa. Drought stress with accumulation of reactive oxygen species (ROS) had a negative effect on most of the measured traits. In seeds that were primed with appropriate selenium concentrations, germination parameters and antioxidant enzyme activity as well as proline and protein content increased compared to the control treatment. Under conditions of severe stress (–1.2 MPa), the highest activity of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) enzymes was observed in prime with selenium nanoparticles at concentrations of 4.5, 6.0 and 4.5 mg·L?1, respectively. Concentrations higher than 3 mg·L?1 of selenium nanoparticles and concentrations of 3 mg·L?1 sodium selenate had the highest accumulation of photosynthetic pigments under control (stress-free) conditions. The present study shows that selenium priming can reduce the harmful effects of drought stress on quinoa by altering germination properties and biochemical properties. |
id |
IAC-1_087857ac4d2c3a86e1a4ebb311250069 |
---|---|
oai_identifier_str |
oai:scielo:S0006-87052022000100206 |
network_acronym_str |
IAC-1 |
network_name_str |
Bragantia |
repository_id_str |
|
spelling |
Seed germination and physiological responses of quinoa to selenium priming under drought stressantioxidantsChenopodium quinoa Willd.photosynthetic efficiencyROSABSTRACT The early stages of quinoa germination are sensitive to drought stress. For this purpose, a study entitled the effect of selenium in different concentrations on germination characteristics and some antioxidant enzymes of quinoa under drought stress conditions with polyethylene glycol (PEG 6000) was investigated. The first experimental factor was seed priming with selenium (from two sources: sodium selenate and selenium nanoparticles: SeNPs ? 33.4 nm) at 0.5, 1.5, 3, 4.5, 6 mg·L?1 concentrations, besides, no priming treatment was used as control. The second factor was drought stress with PEG 6000 in concentrations 0, –0.4, –0.8, and –1.2 MPa. Drought stress with accumulation of reactive oxygen species (ROS) had a negative effect on most of the measured traits. In seeds that were primed with appropriate selenium concentrations, germination parameters and antioxidant enzyme activity as well as proline and protein content increased compared to the control treatment. Under conditions of severe stress (–1.2 MPa), the highest activity of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) enzymes was observed in prime with selenium nanoparticles at concentrations of 4.5, 6.0 and 4.5 mg·L?1, respectively. Concentrations higher than 3 mg·L?1 of selenium nanoparticles and concentrations of 3 mg·L?1 sodium selenate had the highest accumulation of photosynthetic pigments under control (stress-free) conditions. The present study shows that selenium priming can reduce the harmful effects of drought stress on quinoa by altering germination properties and biochemical properties.Instituto Agronômico de Campinas2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052022000100206Bragantia v.81 2022reponame:Bragantiainstname:Instituto Agronômico de Campinas (IAC)instacron:IAC10.1590/1678-4499.20210183info:eu-repo/semantics/openAccessGholami,ShocofehDehaghi,Majid AminiRezazadeh,AlirezaNaji,Amir Mohammadeng2022-02-14T00:00:00Zoai:scielo:S0006-87052022000100206Revistahttps://www.scielo.br/j/brag/https://old.scielo.br/oai/scielo-oai.phpbragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br1678-44990006-8705opendoar:2022-02-14T00:00Bragantia - Instituto Agronômico de Campinas (IAC)false |
dc.title.none.fl_str_mv |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
title |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
spellingShingle |
Seed germination and physiological responses of quinoa to selenium priming under drought stress Gholami,Shocofeh antioxidants Chenopodium quinoa Willd. photosynthetic efficiency ROS |
title_short |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
title_full |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
title_fullStr |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
title_full_unstemmed |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
title_sort |
Seed germination and physiological responses of quinoa to selenium priming under drought stress |
author |
Gholami,Shocofeh |
author_facet |
Gholami,Shocofeh Dehaghi,Majid Amini Rezazadeh,Alireza Naji,Amir Mohammad |
author_role |
author |
author2 |
Dehaghi,Majid Amini Rezazadeh,Alireza Naji,Amir Mohammad |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gholami,Shocofeh Dehaghi,Majid Amini Rezazadeh,Alireza Naji,Amir Mohammad |
dc.subject.por.fl_str_mv |
antioxidants Chenopodium quinoa Willd. photosynthetic efficiency ROS |
topic |
antioxidants Chenopodium quinoa Willd. photosynthetic efficiency ROS |
description |
ABSTRACT The early stages of quinoa germination are sensitive to drought stress. For this purpose, a study entitled the effect of selenium in different concentrations on germination characteristics and some antioxidant enzymes of quinoa under drought stress conditions with polyethylene glycol (PEG 6000) was investigated. The first experimental factor was seed priming with selenium (from two sources: sodium selenate and selenium nanoparticles: SeNPs ? 33.4 nm) at 0.5, 1.5, 3, 4.5, 6 mg·L?1 concentrations, besides, no priming treatment was used as control. The second factor was drought stress with PEG 6000 in concentrations 0, –0.4, –0.8, and –1.2 MPa. Drought stress with accumulation of reactive oxygen species (ROS) had a negative effect on most of the measured traits. In seeds that were primed with appropriate selenium concentrations, germination parameters and antioxidant enzyme activity as well as proline and protein content increased compared to the control treatment. Under conditions of severe stress (–1.2 MPa), the highest activity of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) enzymes was observed in prime with selenium nanoparticles at concentrations of 4.5, 6.0 and 4.5 mg·L?1, respectively. Concentrations higher than 3 mg·L?1 of selenium nanoparticles and concentrations of 3 mg·L?1 sodium selenate had the highest accumulation of photosynthetic pigments under control (stress-free) conditions. The present study shows that selenium priming can reduce the harmful effects of drought stress on quinoa by altering germination properties and biochemical properties. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052022000100206 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052022000100206 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4499.20210183 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
dc.source.none.fl_str_mv |
Bragantia v.81 2022 reponame:Bragantia instname:Instituto Agronômico de Campinas (IAC) instacron:IAC |
instname_str |
Instituto Agronômico de Campinas (IAC) |
instacron_str |
IAC |
institution |
IAC |
reponame_str |
Bragantia |
collection |
Bragantia |
repository.name.fl_str_mv |
Bragantia - Instituto Agronômico de Campinas (IAC) |
repository.mail.fl_str_mv |
bragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br |
_version_ |
1754193308152758272 |