Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bragantia |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052019000300444 |
Resumo: | ABSTRACT The normalized dispersion index (NDI) and the b/a index are commonly used to express the stability of aggregates measured by ultrasound. However, few studies have used the critical energy (CE) extracted from modeling to explain the effects of soil use and management on soil aggregation. The objective of this study was to evaluate the influence of soil cover on the CE level required for dispersion of aggregates of a Typic Hapludalf. Soil samples collected from the 0.0-0.05 m depth were evaluated in five different managements with cover plants: perennial soybean (PS), peanuts (P), spontaneous vegetation (SV), black oat/forage turnip (BOFT), and black oat/hairy vetch (BOHV). Aggregates ? 2 mm of the treatments were exposed to ultrasonic irradiation during 0, 30, 60, 120 and 180 s. The specific applied energies were calculated based on sonification time and potency: 0, 745, 1490, 2980, and 4470 J·g–1. After each sonification, sand (2000-53 ?m), silt (53-2 ?m) and clay (< 2 ?m) were quantified. The mass of aggregates of each size class was modeled as a function of the ultrasonic energy. The CE, the NDI and the b/a indexes were coefficients extracted from these models. Cover crops influenced the critical energy levels required for dispersion of aggregates of the Typic Hapludalf. However, our methodology did not prove management systems with intercrops of the cover crops, as black oats and vetch, contribute more effectively to the increase of soil aggregation. |
id |
IAC-1_939891280ef3942b216fbf4dfa03b216 |
---|---|
oai_identifier_str |
oai:scielo:S0006-87052019000300444 |
network_acronym_str |
IAC-1 |
network_name_str |
Bragantia |
repository_id_str |
|
spelling |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregatesultrasonic dispersionaggregation modelsleguminousgrassesABSTRACT The normalized dispersion index (NDI) and the b/a index are commonly used to express the stability of aggregates measured by ultrasound. However, few studies have used the critical energy (CE) extracted from modeling to explain the effects of soil use and management on soil aggregation. The objective of this study was to evaluate the influence of soil cover on the CE level required for dispersion of aggregates of a Typic Hapludalf. Soil samples collected from the 0.0-0.05 m depth were evaluated in five different managements with cover plants: perennial soybean (PS), peanuts (P), spontaneous vegetation (SV), black oat/forage turnip (BOFT), and black oat/hairy vetch (BOHV). Aggregates ? 2 mm of the treatments were exposed to ultrasonic irradiation during 0, 30, 60, 120 and 180 s. The specific applied energies were calculated based on sonification time and potency: 0, 745, 1490, 2980, and 4470 J·g–1. After each sonification, sand (2000-53 ?m), silt (53-2 ?m) and clay (< 2 ?m) were quantified. The mass of aggregates of each size class was modeled as a function of the ultrasonic energy. The CE, the NDI and the b/a indexes were coefficients extracted from these models. Cover crops influenced the critical energy levels required for dispersion of aggregates of the Typic Hapludalf. However, our methodology did not prove management systems with intercrops of the cover crops, as black oats and vetch, contribute more effectively to the increase of soil aggregation.Instituto Agronômico de Campinas2019-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052019000300444Bragantia v.78 n.3 2019reponame:Bragantiainstname:Instituto Agronômico de Campinas (IAC)instacron:IAC10.1590/1678-4499.20180323info:eu-repo/semantics/openAccessSilva,Érika Andressa daReinert,Dalvan JoséReichert,José MiguelMallmann,Micael StolbenPereira,Monike AndradePons,Sarah SeveroFoggiato,William Saidelleseng2019-10-09T00:00:00Zoai:scielo:S0006-87052019000300444Revistahttps://www.scielo.br/j/brag/https://old.scielo.br/oai/scielo-oai.phpbragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br1678-44990006-8705opendoar:2019-10-09T00:00Bragantia - Instituto Agronômico de Campinas (IAC)false |
dc.title.none.fl_str_mv |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
title |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
spellingShingle |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates Silva,Érika Andressa da ultrasonic dispersion aggregation models leguminous grasses |
title_short |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
title_full |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
title_fullStr |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
title_full_unstemmed |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
title_sort |
Soil conservation management with cover crops: effects on critical energy levels, release and dispersion of aggregates |
author |
Silva,Érika Andressa da |
author_facet |
Silva,Érika Andressa da Reinert,Dalvan José Reichert,José Miguel Mallmann,Micael Stolben Pereira,Monike Andrade Pons,Sarah Severo Foggiato,William Saidelles |
author_role |
author |
author2 |
Reinert,Dalvan José Reichert,José Miguel Mallmann,Micael Stolben Pereira,Monike Andrade Pons,Sarah Severo Foggiato,William Saidelles |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Silva,Érika Andressa da Reinert,Dalvan José Reichert,José Miguel Mallmann,Micael Stolben Pereira,Monike Andrade Pons,Sarah Severo Foggiato,William Saidelles |
dc.subject.por.fl_str_mv |
ultrasonic dispersion aggregation models leguminous grasses |
topic |
ultrasonic dispersion aggregation models leguminous grasses |
description |
ABSTRACT The normalized dispersion index (NDI) and the b/a index are commonly used to express the stability of aggregates measured by ultrasound. However, few studies have used the critical energy (CE) extracted from modeling to explain the effects of soil use and management on soil aggregation. The objective of this study was to evaluate the influence of soil cover on the CE level required for dispersion of aggregates of a Typic Hapludalf. Soil samples collected from the 0.0-0.05 m depth were evaluated in five different managements with cover plants: perennial soybean (PS), peanuts (P), spontaneous vegetation (SV), black oat/forage turnip (BOFT), and black oat/hairy vetch (BOHV). Aggregates ? 2 mm of the treatments were exposed to ultrasonic irradiation during 0, 30, 60, 120 and 180 s. The specific applied energies were calculated based on sonification time and potency: 0, 745, 1490, 2980, and 4470 J·g–1. After each sonification, sand (2000-53 ?m), silt (53-2 ?m) and clay (< 2 ?m) were quantified. The mass of aggregates of each size class was modeled as a function of the ultrasonic energy. The CE, the NDI and the b/a indexes were coefficients extracted from these models. Cover crops influenced the critical energy levels required for dispersion of aggregates of the Typic Hapludalf. However, our methodology did not prove management systems with intercrops of the cover crops, as black oats and vetch, contribute more effectively to the increase of soil aggregation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052019000300444 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052019000300444 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4499.20180323 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
dc.source.none.fl_str_mv |
Bragantia v.78 n.3 2019 reponame:Bragantia instname:Instituto Agronômico de Campinas (IAC) instacron:IAC |
instname_str |
Instituto Agronômico de Campinas (IAC) |
instacron_str |
IAC |
institution |
IAC |
reponame_str |
Bragantia |
collection |
Bragantia |
repository.name.fl_str_mv |
Bragantia - Instituto Agronômico de Campinas (IAC) |
repository.mail.fl_str_mv |
bragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br |
_version_ |
1754193307266711552 |