O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff

Detalhes bibliográficos
Autor(a) principal: Malini, Fabio
Data de Publicação: 2017
Outros Autores: Ciarelli, Patrick, Medeiros, Jean
Tipo de documento: Artigo
Idioma: por
Título da fonte: Liinc em Revista
Texto Completo: http://revista.ibict.br/liinc/article/view/4089
Resumo: Resumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.  Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma. The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter. 
id IBICT-2_40790745058f992717a31fcbde1ffe64
oai_identifier_str oai:ojs.revista.ibict.br:article/4089
network_acronym_str IBICT-2
network_name_str Liinc em Revista
spelling O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma RousseffResumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.  Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma. The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter. Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revista.ibict.br/liinc/article/view/408910.18617/liinc.v13i2.4089Liinc em Revista; Vol. 13 No. 2 (2017): Disinformation, Misinformation and Hyper-InformationLiinc em Revista; Vol. 13 Núm. 2 (2017): Desinformação e hiperinformação nas redes digitais contemporâneasLiinc em Revista; v. 13 n. 2 (2017): Desinformação e hiperinformação nas redes digitais contemporâneas1808-3536reponame:Liinc em Revistainstname:Instituto Brasileiro de Informação Ciência e Tecnologia (IBICT)instacron:IBICTporhttp://revista.ibict.br/liinc/article/view/4089/3400Malini, FabioCiarelli, PatrickMedeiros, Jeaninfo:eu-repo/semantics/openAccess2021-05-27T11:33:35Zoai:ojs.revista.ibict.br:article/4089Revistahttp://revista.ibict.br/liincPUBhttp://revista.ibict.br/liinc/oai1808-35361808-3536opendoar:null2021-05-27 11:33:37.66Liinc em Revista - Instituto Brasileiro de Informação Ciência e Tecnologia (IBICT)false
dc.title.none.fl_str_mv O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
title O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
spellingShingle O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
Malini, Fabio
title_short O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
title_full O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
title_fullStr O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
title_full_unstemmed O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
title_sort O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
author Malini, Fabio
author_facet Malini, Fabio
Ciarelli, Patrick
Medeiros, Jean
author_role author
author2 Ciarelli, Patrick
Medeiros, Jean
author2_role author
author
dc.contributor.author.fl_str_mv Malini, Fabio
Ciarelli, Patrick
Medeiros, Jean
dc.description.none.fl_txt_mv Resumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.  Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma. The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter. 
description Resumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.  Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma. The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter. 
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revista.ibict.br/liinc/article/view/4089
10.18617/liinc.v13i2.4089
url http://revista.ibict.br/liinc/article/view/4089
identifier_str_mv 10.18617/liinc.v13i2.4089
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revista.ibict.br/liinc/article/view/4089/3400
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
publisher.none.fl_str_mv Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
dc.source.none.fl_str_mv Liinc em Revista; Vol. 13 No. 2 (2017): Disinformation, Misinformation and Hyper-Information
Liinc em Revista; Vol. 13 Núm. 2 (2017): Desinformação e hiperinformação nas redes digitais contemporâneas
Liinc em Revista; v. 13 n. 2 (2017): Desinformação e hiperinformação nas redes digitais contemporâneas
1808-3536
reponame:Liinc em Revista
instname:Instituto Brasileiro de Informação Ciência e Tecnologia (IBICT)
instacron:IBICT
reponame_str Liinc em Revista
collection Liinc em Revista
instname_str Instituto Brasileiro de Informação Ciência e Tecnologia (IBICT)
instacron_str IBICT
institution IBICT
repository.name.fl_str_mv Liinc em Revista - Instituto Brasileiro de Informação Ciência e Tecnologia (IBICT)
repository.mail.fl_str_mv
_version_ 1700924325970837504