A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete

Detalhes bibliográficos
Autor(a) principal: Fiore,P. V.
Data de Publicação: 2016
Outros Autores: Maghous,D. B., Campos Filho,A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista IBRACON de Estruturas e Materiais
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000300403
Resumo: ABSTRACT This paper describes a numerical simulation with 3D finite elements of a tunnel. The viscoplastic law of Perzyna represents the rockmass behavior. The concrete, shotcrete or precast, is modeled as a viscoelastic material through the Maxwell and Kelvin chain models. Finite element simulations are performed by incorporating subroutines for viscoelastic concrete models in the ANSYS code. The method to simulate tunnel excavations is by activating and deactivating elements in sequential steps. In the first part of the paper two validations are performed. The analytical solution and the deformation achieved on the stabilization in the ANSYS code are compared with an unlined tunnel. A lined tunnel, with an elastic and viscoplastic rockmass combined with an elastic lining, is compared with the results of the GEOMEC91 code. In the second part, it is compared the same tunnel with two different concrete lining for two chain models. Finally, it is modeled the Kielder experimental tunnel, which in situ measured data is available.
id IBRACON-1_01fe22918124d563121e723582855187
oai_identifier_str oai:scielo:S1983-41952016000300403
network_acronym_str IBRACON-1
network_name_str Revista IBRACON de Estruturas e Materiais
repository_id_str
spelling A tridimensional finite element approach to model a tunnel with shotcrete and precast concretefinite elementstunnelviscoelasticityviscoplasticityANSYSABSTRACT This paper describes a numerical simulation with 3D finite elements of a tunnel. The viscoplastic law of Perzyna represents the rockmass behavior. The concrete, shotcrete or precast, is modeled as a viscoelastic material through the Maxwell and Kelvin chain models. Finite element simulations are performed by incorporating subroutines for viscoelastic concrete models in the ANSYS code. The method to simulate tunnel excavations is by activating and deactivating elements in sequential steps. In the first part of the paper two validations are performed. The analytical solution and the deformation achieved on the stabilization in the ANSYS code are compared with an unlined tunnel. A lined tunnel, with an elastic and viscoplastic rockmass combined with an elastic lining, is compared with the results of the GEOMEC91 code. In the second part, it is compared the same tunnel with two different concrete lining for two chain models. Finally, it is modeled the Kielder experimental tunnel, which in situ measured data is available.IBRACON - Instituto Brasileiro do Concreto2016-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000300403Revista IBRACON de Estruturas e Materiais v.9 n.3 2016reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/S1983-41952016000300005info:eu-repo/semantics/openAccessFiore,P. V.Maghous,D. B.Campos Filho,A.eng2016-07-13T00:00:00Zoai:scielo:S1983-41952016000300403Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2016-07-13T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false
dc.title.none.fl_str_mv A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
title A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
spellingShingle A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
Fiore,P. V.
finite elements
tunnel
viscoelasticity
viscoplasticity
ANSYS
title_short A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
title_full A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
title_fullStr A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
title_full_unstemmed A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
title_sort A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete
author Fiore,P. V.
author_facet Fiore,P. V.
Maghous,D. B.
Campos Filho,A.
author_role author
author2 Maghous,D. B.
Campos Filho,A.
author2_role author
author
dc.contributor.author.fl_str_mv Fiore,P. V.
Maghous,D. B.
Campos Filho,A.
dc.subject.por.fl_str_mv finite elements
tunnel
viscoelasticity
viscoplasticity
ANSYS
topic finite elements
tunnel
viscoelasticity
viscoplasticity
ANSYS
description ABSTRACT This paper describes a numerical simulation with 3D finite elements of a tunnel. The viscoplastic law of Perzyna represents the rockmass behavior. The concrete, shotcrete or precast, is modeled as a viscoelastic material through the Maxwell and Kelvin chain models. Finite element simulations are performed by incorporating subroutines for viscoelastic concrete models in the ANSYS code. The method to simulate tunnel excavations is by activating and deactivating elements in sequential steps. In the first part of the paper two validations are performed. The analytical solution and the deformation achieved on the stabilization in the ANSYS code are compared with an unlined tunnel. A lined tunnel, with an elastic and viscoplastic rockmass combined with an elastic lining, is compared with the results of the GEOMEC91 code. In the second part, it is compared the same tunnel with two different concrete lining for two chain models. Finally, it is modeled the Kielder experimental tunnel, which in situ measured data is available.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000300403
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000300403
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1983-41952016000300005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv Revista IBRACON de Estruturas e Materiais v.9 n.3 2016
reponame:Revista IBRACON de Estruturas e Materiais
instname:Instituto Brasileiro do Concreto (IBRACON)
instacron:IBRACON
instname_str Instituto Brasileiro do Concreto (IBRACON)
instacron_str IBRACON
institution IBRACON
reponame_str Revista IBRACON de Estruturas e Materiais
collection Revista IBRACON de Estruturas e Materiais
repository.name.fl_str_mv Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)
repository.mail.fl_str_mv editores.riem@gmail.com||arlene@ibracon.org.br
_version_ 1754193604879843328