Particle packing of cement and silica fume in pastes using an analytical model

Detalhes bibliográficos
Autor(a) principal: HERMANN,A.
Data de Publicação: 2016
Outros Autores: LANGARO,E. A., SILVA,S. H. LOPES DA, KLEIN,N. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista IBRACON de Estruturas e Materiais
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000100048
Resumo: When added to concrete in appropriate content, silica fume may provide an increase in the mechanical strength of the material due to its high pozzolanic reactivity. In addition to the chemical contribution, physical changes can also be observed in concretes with silica fume due to an improvement in the particle packing of the paste. This is a result of their small size spherical particles, which fill the voids between the larger cement grains. However, it is necessary to properly establish the cement replacement content by silica fume, because at high amounts, which exceed the volume of voids between the cement particles, silica fume can promote the loosening of these particles. Thus, instead of filling the voids and increasing the packing density, the addition of silica fume will increase the volume of voids, decreasing the solid concentration. Consequently, this will impair the properties of the concrete. The objective of this paper is to use a particle packing analytical model, the CPM (Compressible Packing Model), to verify the maximum packing density of cement and silica fume, which could be associated with the silica fume optimum content in pastes. The ideal content of silica fume in pastes, mortars and concretes is usually experimentally determined. However, a theoretical study to contrast experimental data may help understanding the behaviour of silica fume in mixes. Theoretical results show maximum amounts of silica fume in the order of 18 to 20% of the cement weight, which is high considering recommendations on literature of 15%. Nevertheless, the packing model does not consider the effect of silica fume high specific surface on the agglomeration of particles or water demand. Hence, the packing density predicted by this model cannot be used as the single parameter in determining the optimum amount of silica fume in pastes.
id IBRACON-1_65d3894ce9925dec4c6cd5821dae7def
oai_identifier_str oai:scielo:S1983-41952016000100048
network_acronym_str IBRACON-1
network_name_str Revista IBRACON de Estruturas e Materiais
repository_id_str
spelling Particle packing of cement and silica fume in pastes using an analytical modelsilica fumepacking of fine particleswet packinganalytical modelCPMWhen added to concrete in appropriate content, silica fume may provide an increase in the mechanical strength of the material due to its high pozzolanic reactivity. In addition to the chemical contribution, physical changes can also be observed in concretes with silica fume due to an improvement in the particle packing of the paste. This is a result of their small size spherical particles, which fill the voids between the larger cement grains. However, it is necessary to properly establish the cement replacement content by silica fume, because at high amounts, which exceed the volume of voids between the cement particles, silica fume can promote the loosening of these particles. Thus, instead of filling the voids and increasing the packing density, the addition of silica fume will increase the volume of voids, decreasing the solid concentration. Consequently, this will impair the properties of the concrete. The objective of this paper is to use a particle packing analytical model, the CPM (Compressible Packing Model), to verify the maximum packing density of cement and silica fume, which could be associated with the silica fume optimum content in pastes. The ideal content of silica fume in pastes, mortars and concretes is usually experimentally determined. However, a theoretical study to contrast experimental data may help understanding the behaviour of silica fume in mixes. Theoretical results show maximum amounts of silica fume in the order of 18 to 20% of the cement weight, which is high considering recommendations on literature of 15%. Nevertheless, the packing model does not consider the effect of silica fume high specific surface on the agglomeration of particles or water demand. Hence, the packing density predicted by this model cannot be used as the single parameter in determining the optimum amount of silica fume in pastes.IBRACON - Instituto Brasileiro do Concreto2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000100048Revista IBRACON de Estruturas e Materiais v.9 n.1 2016reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/S1983-41952016000100004info:eu-repo/semantics/openAccessHERMANN,A.LANGARO,E. A.SILVA,S. H. LOPES DAKLEIN,N. S.eng2016-02-15T00:00:00Zoai:scielo:S1983-41952016000100048Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2016-02-15T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false
dc.title.none.fl_str_mv Particle packing of cement and silica fume in pastes using an analytical model
title Particle packing of cement and silica fume in pastes using an analytical model
spellingShingle Particle packing of cement and silica fume in pastes using an analytical model
HERMANN,A.
silica fume
packing of fine particles
wet packing
analytical model
CPM
title_short Particle packing of cement and silica fume in pastes using an analytical model
title_full Particle packing of cement and silica fume in pastes using an analytical model
title_fullStr Particle packing of cement and silica fume in pastes using an analytical model
title_full_unstemmed Particle packing of cement and silica fume in pastes using an analytical model
title_sort Particle packing of cement and silica fume in pastes using an analytical model
author HERMANN,A.
author_facet HERMANN,A.
LANGARO,E. A.
SILVA,S. H. LOPES DA
KLEIN,N. S.
author_role author
author2 LANGARO,E. A.
SILVA,S. H. LOPES DA
KLEIN,N. S.
author2_role author
author
author
dc.contributor.author.fl_str_mv HERMANN,A.
LANGARO,E. A.
SILVA,S. H. LOPES DA
KLEIN,N. S.
dc.subject.por.fl_str_mv silica fume
packing of fine particles
wet packing
analytical model
CPM
topic silica fume
packing of fine particles
wet packing
analytical model
CPM
description When added to concrete in appropriate content, silica fume may provide an increase in the mechanical strength of the material due to its high pozzolanic reactivity. In addition to the chemical contribution, physical changes can also be observed in concretes with silica fume due to an improvement in the particle packing of the paste. This is a result of their small size spherical particles, which fill the voids between the larger cement grains. However, it is necessary to properly establish the cement replacement content by silica fume, because at high amounts, which exceed the volume of voids between the cement particles, silica fume can promote the loosening of these particles. Thus, instead of filling the voids and increasing the packing density, the addition of silica fume will increase the volume of voids, decreasing the solid concentration. Consequently, this will impair the properties of the concrete. The objective of this paper is to use a particle packing analytical model, the CPM (Compressible Packing Model), to verify the maximum packing density of cement and silica fume, which could be associated with the silica fume optimum content in pastes. The ideal content of silica fume in pastes, mortars and concretes is usually experimentally determined. However, a theoretical study to contrast experimental data may help understanding the behaviour of silica fume in mixes. Theoretical results show maximum amounts of silica fume in the order of 18 to 20% of the cement weight, which is high considering recommendations on literature of 15%. Nevertheless, the packing model does not consider the effect of silica fume high specific surface on the agglomeration of particles or water demand. Hence, the packing density predicted by this model cannot be used as the single parameter in determining the optimum amount of silica fume in pastes.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000100048
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952016000100048
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1983-41952016000100004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv Revista IBRACON de Estruturas e Materiais v.9 n.1 2016
reponame:Revista IBRACON de Estruturas e Materiais
instname:Instituto Brasileiro do Concreto (IBRACON)
instacron:IBRACON
instname_str Instituto Brasileiro do Concreto (IBRACON)
instacron_str IBRACON
institution IBRACON
reponame_str Revista IBRACON de Estruturas e Materiais
collection Revista IBRACON de Estruturas e Materiais
repository.name.fl_str_mv Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)
repository.mail.fl_str_mv editores.riem@gmail.com||arlene@ibracon.org.br
_version_ 1754193604856774656