Effect of NaOH concentration and curing regime on geopolymer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000601174 |
Resumo: | Abstract The effect of alkali concentration and curing temperature regime on fly ash-based geopolymer pastes was investigated in this study by using NaOH solutions. Prismatic specimens were molded, cured at 65 °C and 85 °C and submitted to flexural and compressive strength tests. Unreacted fly ash and geopolymers were characterized by X-ray diffraction and thermogravimetric analysis. In general, the mechanical strength was enhanced by increasing the molar concentration and the curing temperature. This trend was confirmed by thermogravimetric data. However, for a lower amount of NaOH there were no significant differences between the strength results. The mixture with the highest strength was obtained with the 16 M NaOH solution and curing temperature of 85 °C, which resulted in flexural strength of 4.20 MPa, compressive strength of 21.35 MPa and also the highest weight loss of 9.89%. |
id |
IBRACON-1_783d48def4bcb680125ccb39af5021e6 |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952017000601174 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Effect of NaOH concentration and curing regime on geopolymeralkali-activated binderstrengthx-ray diffractionthermal analysisAbstract The effect of alkali concentration and curing temperature regime on fly ash-based geopolymer pastes was investigated in this study by using NaOH solutions. Prismatic specimens were molded, cured at 65 °C and 85 °C and submitted to flexural and compressive strength tests. Unreacted fly ash and geopolymers were characterized by X-ray diffraction and thermogravimetric analysis. In general, the mechanical strength was enhanced by increasing the molar concentration and the curing temperature. This trend was confirmed by thermogravimetric data. However, for a lower amount of NaOH there were no significant differences between the strength results. The mixture with the highest strength was obtained with the 16 M NaOH solution and curing temperature of 85 °C, which resulted in flexural strength of 4.20 MPa, compressive strength of 21.35 MPa and also the highest weight loss of 9.89%.IBRACON - Instituto Brasileiro do Concreto2017-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000601174Revista IBRACON de Estruturas e Materiais v.10 n.6 2017reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952017000600003info:eu-repo/semantics/openAccessLIVI,C. N.REPETTE,W. L.eng2018-01-19T00:00:00Zoai:scielo:S1983-41952017000601174Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2018-01-19T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Effect of NaOH concentration and curing regime on geopolymer |
title |
Effect of NaOH concentration and curing regime on geopolymer |
spellingShingle |
Effect of NaOH concentration and curing regime on geopolymer LIVI,C. N. alkali-activated binder strength x-ray diffraction thermal analysis |
title_short |
Effect of NaOH concentration and curing regime on geopolymer |
title_full |
Effect of NaOH concentration and curing regime on geopolymer |
title_fullStr |
Effect of NaOH concentration and curing regime on geopolymer |
title_full_unstemmed |
Effect of NaOH concentration and curing regime on geopolymer |
title_sort |
Effect of NaOH concentration and curing regime on geopolymer |
author |
LIVI,C. N. |
author_facet |
LIVI,C. N. REPETTE,W. L. |
author_role |
author |
author2 |
REPETTE,W. L. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
LIVI,C. N. REPETTE,W. L. |
dc.subject.por.fl_str_mv |
alkali-activated binder strength x-ray diffraction thermal analysis |
topic |
alkali-activated binder strength x-ray diffraction thermal analysis |
description |
Abstract The effect of alkali concentration and curing temperature regime on fly ash-based geopolymer pastes was investigated in this study by using NaOH solutions. Prismatic specimens were molded, cured at 65 °C and 85 °C and submitted to flexural and compressive strength tests. Unreacted fly ash and geopolymers were characterized by X-ray diffraction and thermogravimetric analysis. In general, the mechanical strength was enhanced by increasing the molar concentration and the curing temperature. This trend was confirmed by thermogravimetric data. However, for a lower amount of NaOH there were no significant differences between the strength results. The mixture with the highest strength was obtained with the 16 M NaOH solution and curing temperature of 85 °C, which resulted in flexural strength of 4.20 MPa, compressive strength of 21.35 MPa and also the highest weight loss of 9.89%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000601174 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000601174 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952017000600003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.10 n.6 2017 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193605242650624 |