Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952013000400006 |
Resumo: | Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm) added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers), which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking. |
id |
IBRACON-1_8134c38d877bc58e8fc58cf0c79f6eb5 |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952013000400006 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fibervegetable fiberpost-cracking behaviorstructural masonryStructural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm) added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers), which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.IBRACON - Instituto Brasileiro do Concreto2013-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952013000400006Revista IBRACON de Estruturas e Materiais v.6 n.4 2013reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/S1983-41952013000400006info:eu-repo/semantics/openAccessSoto,I. I.Ramalho,M. A.Izquierdo,O. S.eng2013-08-27T00:00:00Zoai:scielo:S1983-41952013000400006Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2013-08-27T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
title |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
spellingShingle |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber Soto,I. I. vegetable fiber post-cracking behavior structural masonry |
title_short |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
title_full |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
title_fullStr |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
title_full_unstemmed |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
title_sort |
Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber |
author |
Soto,I. I. |
author_facet |
Soto,I. I. Ramalho,M. A. Izquierdo,O. S. |
author_role |
author |
author2 |
Ramalho,M. A. Izquierdo,O. S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Soto,I. I. Ramalho,M. A. Izquierdo,O. S. |
dc.subject.por.fl_str_mv |
vegetable fiber post-cracking behavior structural masonry |
topic |
vegetable fiber post-cracking behavior structural masonry |
description |
Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm) added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers), which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952013000400006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952013000400006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1983-41952013000400006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.6 n.4 2013 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193604435247104 |