Reinforcement design of concrete sections based on the arc-length method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601258 |
Resumo: | Abstract The reinforcement design of concrete cross-sections with the parabola-rectangle diagram is a well-established model. A global limit analysis, considering geometrical and material nonlinear behavior, demands a constitutive relationship that better describes concrete behavior. The Sargin curve from the CEB-FIP model code, which is defined from the modulus of elasticity at the origin and the peak point, represents the descending branch of the stress-strain relationship. This research presents a numerical method for the reinforcement design of concrete cross-sections based on the arc length process. This method is numerically efficient in the descending branch of the Sargin curve, where other processes present convergence problems. The examples discuss the reinforcement design of concrete sections based on the parabola-rectangle diagram and the Sargin curve using the design parameters of the local and global models, respectively. |
id |
IBRACON-1_816e2f6412721338429149340e3860cb |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952018000601258 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Reinforcement design of concrete sections based on the arc-length methodreinforced concretedesign of concrete cross-sectionsSargin curvearc-length methodAbstract The reinforcement design of concrete cross-sections with the parabola-rectangle diagram is a well-established model. A global limit analysis, considering geometrical and material nonlinear behavior, demands a constitutive relationship that better describes concrete behavior. The Sargin curve from the CEB-FIP model code, which is defined from the modulus of elasticity at the origin and the peak point, represents the descending branch of the stress-strain relationship. This research presents a numerical method for the reinforcement design of concrete cross-sections based on the arc length process. This method is numerically efficient in the descending branch of the Sargin curve, where other processes present convergence problems. The examples discuss the reinforcement design of concrete sections based on the parabola-rectangle diagram and the Sargin curve using the design parameters of the local and global models, respectively.IBRACON - Instituto Brasileiro do Concreto2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601258Revista IBRACON de Estruturas e Materiais v.11 n.6 2018reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952018000600006info:eu-repo/semantics/openAccessKABENJABU,J. N.SCHULZ,M.eng2018-12-10T00:00:00Zoai:scielo:S1983-41952018000601258Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2018-12-10T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Reinforcement design of concrete sections based on the arc-length method |
title |
Reinforcement design of concrete sections based on the arc-length method |
spellingShingle |
Reinforcement design of concrete sections based on the arc-length method KABENJABU,J. N. reinforced concrete design of concrete cross-sections Sargin curve arc-length method |
title_short |
Reinforcement design of concrete sections based on the arc-length method |
title_full |
Reinforcement design of concrete sections based on the arc-length method |
title_fullStr |
Reinforcement design of concrete sections based on the arc-length method |
title_full_unstemmed |
Reinforcement design of concrete sections based on the arc-length method |
title_sort |
Reinforcement design of concrete sections based on the arc-length method |
author |
KABENJABU,J. N. |
author_facet |
KABENJABU,J. N. SCHULZ,M. |
author_role |
author |
author2 |
SCHULZ,M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
KABENJABU,J. N. SCHULZ,M. |
dc.subject.por.fl_str_mv |
reinforced concrete design of concrete cross-sections Sargin curve arc-length method |
topic |
reinforced concrete design of concrete cross-sections Sargin curve arc-length method |
description |
Abstract The reinforcement design of concrete cross-sections with the parabola-rectangle diagram is a well-established model. A global limit analysis, considering geometrical and material nonlinear behavior, demands a constitutive relationship that better describes concrete behavior. The Sargin curve from the CEB-FIP model code, which is defined from the modulus of elasticity at the origin and the peak point, represents the descending branch of the stress-strain relationship. This research presents a numerical method for the reinforcement design of concrete cross-sections based on the arc length process. This method is numerically efficient in the descending branch of the Sargin curve, where other processes present convergence problems. The examples discuss the reinforcement design of concrete sections based on the parabola-rectangle diagram and the Sargin curve using the design parameters of the local and global models, respectively. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601258 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000601258 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952018000600006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.11 n.6 2018 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193605589729280 |