Optimal configuration of RC frames considering ultimate and serviceability limit state constraints

Detalhes bibliográficos
Autor(a) principal: Juliani,Marcela Alejandra
Data de Publicação: 2021
Outros Autores: Gomes,Wellison José de Santana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista IBRACON de Estruturas e Materiais
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200206
Resumo: Abstract Most current structural design codes are based on the concept of limit states, that is, when a structure fails to meet one of its purposes, it is said that it has reached its limit state. In the design of reinforced concrete structures, the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS) must be checked. Therefore, this paper presents an optimization scheme for reinforced concrete plane frames, in which the objective is to minimize the cost of structures for three cases of constraints: the first is related to ULS and SLS; the second refers only to the ULS; and the third is related only to the SLS. Computational routines for checking limit states of beams and columns are implemented in MATLAB, following the requirements of the Brazilian code. Structural analyses are performed by using the MASTAN2 software, taking into account geometric nonlinearities and a simplified physical nonlinearity method. The objective function considers the cost of concrete, reinforcement and formwork, and the optimization problems are solved by genetic algorithms. Two numerical examples of frames are presented. Regarding the optimal characteristics related to each type of limit state, it is noted that the beams and columns tend to have larger and more reinforced cross sections in the case of the ULS. Even so, optimal structures related to the ULS often do not satisfy SLS and vice versa, which indicates that the optimal characteristics related to each limit state may be different. In addition, it is observed that the SLS is less restrictive than ULS.
id IBRACON-1_89069621b2ca2583b1035b30a4751f89
oai_identifier_str oai:scielo:S1983-41952021000200206
network_acronym_str IBRACON-1
network_name_str Revista IBRACON de Estruturas e Materiais
repository_id_str
spelling Optimal configuration of RC frames considering ultimate and serviceability limit state constraintsoptimizationreinforced concretelimit statesgenetic algorithmsAbstract Most current structural design codes are based on the concept of limit states, that is, when a structure fails to meet one of its purposes, it is said that it has reached its limit state. In the design of reinforced concrete structures, the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS) must be checked. Therefore, this paper presents an optimization scheme for reinforced concrete plane frames, in which the objective is to minimize the cost of structures for three cases of constraints: the first is related to ULS and SLS; the second refers only to the ULS; and the third is related only to the SLS. Computational routines for checking limit states of beams and columns are implemented in MATLAB, following the requirements of the Brazilian code. Structural analyses are performed by using the MASTAN2 software, taking into account geometric nonlinearities and a simplified physical nonlinearity method. The objective function considers the cost of concrete, reinforcement and formwork, and the optimization problems are solved by genetic algorithms. Two numerical examples of frames are presented. Regarding the optimal characteristics related to each type of limit state, it is noted that the beams and columns tend to have larger and more reinforced cross sections in the case of the ULS. Even so, optimal structures related to the ULS often do not satisfy SLS and vice versa, which indicates that the optimal characteristics related to each limit state may be different. In addition, it is observed that the SLS is less restrictive than ULS.IBRACON - Instituto Brasileiro do Concreto2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200206Revista IBRACON de Estruturas e Materiais v.14 n.2 2021reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952021000200004info:eu-repo/semantics/openAccessJuliani,Marcela AlejandraGomes,Wellison José de Santanaeng2021-01-21T00:00:00Zoai:scielo:S1983-41952021000200206Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2021-01-21T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false
dc.title.none.fl_str_mv Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
title Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
spellingShingle Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
Juliani,Marcela Alejandra
optimization
reinforced concrete
limit states
genetic algorithms
title_short Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
title_full Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
title_fullStr Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
title_full_unstemmed Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
title_sort Optimal configuration of RC frames considering ultimate and serviceability limit state constraints
author Juliani,Marcela Alejandra
author_facet Juliani,Marcela Alejandra
Gomes,Wellison José de Santana
author_role author
author2 Gomes,Wellison José de Santana
author2_role author
dc.contributor.author.fl_str_mv Juliani,Marcela Alejandra
Gomes,Wellison José de Santana
dc.subject.por.fl_str_mv optimization
reinforced concrete
limit states
genetic algorithms
topic optimization
reinforced concrete
limit states
genetic algorithms
description Abstract Most current structural design codes are based on the concept of limit states, that is, when a structure fails to meet one of its purposes, it is said that it has reached its limit state. In the design of reinforced concrete structures, the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS) must be checked. Therefore, this paper presents an optimization scheme for reinforced concrete plane frames, in which the objective is to minimize the cost of structures for three cases of constraints: the first is related to ULS and SLS; the second refers only to the ULS; and the third is related only to the SLS. Computational routines for checking limit states of beams and columns are implemented in MATLAB, following the requirements of the Brazilian code. Structural analyses are performed by using the MASTAN2 software, taking into account geometric nonlinearities and a simplified physical nonlinearity method. The objective function considers the cost of concrete, reinforcement and formwork, and the optimization problems are solved by genetic algorithms. Two numerical examples of frames are presented. Regarding the optimal characteristics related to each type of limit state, it is noted that the beams and columns tend to have larger and more reinforced cross sections in the case of the ULS. Even so, optimal structures related to the ULS often do not satisfy SLS and vice versa, which indicates that the optimal characteristics related to each limit state may be different. In addition, it is observed that the SLS is less restrictive than ULS.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200206
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200206
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1983-41952021000200004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv Revista IBRACON de Estruturas e Materiais v.14 n.2 2021
reponame:Revista IBRACON de Estruturas e Materiais
instname:Instituto Brasileiro do Concreto (IBRACON)
instacron:IBRACON
instname_str Instituto Brasileiro do Concreto (IBRACON)
instacron_str IBRACON
institution IBRACON
reponame_str Revista IBRACON de Estruturas e Materiais
collection Revista IBRACON de Estruturas e Materiais
repository.name.fl_str_mv Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)
repository.mail.fl_str_mv editores.riem@gmail.com||arlene@ibracon.org.br
_version_ 1754193606443270144