Optimized dimensioning of steel-concrete composite beams

Detalhes bibliográficos
Autor(a) principal: SILVA,A. R.
Data de Publicação: 2019
Outros Autores: RODRIGUES,T. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista IBRACON de Estruturas e Materiais
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000601428
Resumo: Abstract The steel-concrete composite sections are often used in civil building in Brazil and around the world. The connection of the steel profile and the concrete slab increases the performance of the composite structural element due to the use of the advantages of each material. In this article, a bar element is used with an interface element for nonlinear analysis of steel-concrete composite beams with partial interaction. The objective is to develop an algorithm that uses this analysis tool to design steel-concrete composite beams looking for project optimized in terms of material costs. Defined spans, supports, ultimate and service load, an optimization algorithm is used to define the dimensions of the rectangular cross section of the concrete slab, I-shaped steel profile, and the reinforcement bars of the concrete slab, so that the quantity of these materials are the minimum to ensure structural safety, considering the ultimate and service limit states. The design constraints are obtained from building code requirements for concrete, steel and composite structures. The objective function is defined as the cost per unit length of the composite beam, obtained from the unit cost of each material, steel, concrete and reinforcement. In the optimization process, the iterative method sequential linear programming is used, in which the nonlinear problem is approximated by a sequence of linear problems, which has its optimum point defined step by step by the Simplex method. Examples of composite beams with ultimate loads defined in the literature were used to validate the implementations. Other examples were analyzed, being evaluated at each iteration the restrictions and objective function to verify the efficiency of the algorithm.
id IBRACON-1_897c6cf125c319cf18e08cd51af97a9b
oai_identifier_str oai:scielo:S1983-41952019000601428
network_acronym_str IBRACON-1
network_name_str Revista IBRACON de Estruturas e Materiais
repository_id_str
spelling Optimized dimensioning of steel-concrete composite beamspilesPITreinforcement effectsAbstract The steel-concrete composite sections are often used in civil building in Brazil and around the world. The connection of the steel profile and the concrete slab increases the performance of the composite structural element due to the use of the advantages of each material. In this article, a bar element is used with an interface element for nonlinear analysis of steel-concrete composite beams with partial interaction. The objective is to develop an algorithm that uses this analysis tool to design steel-concrete composite beams looking for project optimized in terms of material costs. Defined spans, supports, ultimate and service load, an optimization algorithm is used to define the dimensions of the rectangular cross section of the concrete slab, I-shaped steel profile, and the reinforcement bars of the concrete slab, so that the quantity of these materials are the minimum to ensure structural safety, considering the ultimate and service limit states. The design constraints are obtained from building code requirements for concrete, steel and composite structures. The objective function is defined as the cost per unit length of the composite beam, obtained from the unit cost of each material, steel, concrete and reinforcement. In the optimization process, the iterative method sequential linear programming is used, in which the nonlinear problem is approximated by a sequence of linear problems, which has its optimum point defined step by step by the Simplex method. Examples of composite beams with ultimate loads defined in the literature were used to validate the implementations. Other examples were analyzed, being evaluated at each iteration the restrictions and objective function to verify the efficiency of the algorithm.IBRACON - Instituto Brasileiro do Concreto2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000601428Revista IBRACON de Estruturas e Materiais v.12 n.6 2019reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952019000600012info:eu-repo/semantics/openAccessSILVA,A. R.RODRIGUES,T. A.eng2019-12-10T00:00:00Zoai:scielo:S1983-41952019000601428Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2019-12-10T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false
dc.title.none.fl_str_mv Optimized dimensioning of steel-concrete composite beams
title Optimized dimensioning of steel-concrete composite beams
spellingShingle Optimized dimensioning of steel-concrete composite beams
SILVA,A. R.
piles
PIT
reinforcement effects
title_short Optimized dimensioning of steel-concrete composite beams
title_full Optimized dimensioning of steel-concrete composite beams
title_fullStr Optimized dimensioning of steel-concrete composite beams
title_full_unstemmed Optimized dimensioning of steel-concrete composite beams
title_sort Optimized dimensioning of steel-concrete composite beams
author SILVA,A. R.
author_facet SILVA,A. R.
RODRIGUES,T. A.
author_role author
author2 RODRIGUES,T. A.
author2_role author
dc.contributor.author.fl_str_mv SILVA,A. R.
RODRIGUES,T. A.
dc.subject.por.fl_str_mv piles
PIT
reinforcement effects
topic piles
PIT
reinforcement effects
description Abstract The steel-concrete composite sections are often used in civil building in Brazil and around the world. The connection of the steel profile and the concrete slab increases the performance of the composite structural element due to the use of the advantages of each material. In this article, a bar element is used with an interface element for nonlinear analysis of steel-concrete composite beams with partial interaction. The objective is to develop an algorithm that uses this analysis tool to design steel-concrete composite beams looking for project optimized in terms of material costs. Defined spans, supports, ultimate and service load, an optimization algorithm is used to define the dimensions of the rectangular cross section of the concrete slab, I-shaped steel profile, and the reinforcement bars of the concrete slab, so that the quantity of these materials are the minimum to ensure structural safety, considering the ultimate and service limit states. The design constraints are obtained from building code requirements for concrete, steel and composite structures. The objective function is defined as the cost per unit length of the composite beam, obtained from the unit cost of each material, steel, concrete and reinforcement. In the optimization process, the iterative method sequential linear programming is used, in which the nonlinear problem is approximated by a sequence of linear problems, which has its optimum point defined step by step by the Simplex method. Examples of composite beams with ultimate loads defined in the literature were used to validate the implementations. Other examples were analyzed, being evaluated at each iteration the restrictions and objective function to verify the efficiency of the algorithm.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000601428
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000601428
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1983-41952019000600012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv Revista IBRACON de Estruturas e Materiais v.12 n.6 2019
reponame:Revista IBRACON de Estruturas e Materiais
instname:Instituto Brasileiro do Concreto (IBRACON)
instacron:IBRACON
instname_str Instituto Brasileiro do Concreto (IBRACON)
instacron_str IBRACON
institution IBRACON
reponame_str Revista IBRACON de Estruturas e Materiais
collection Revista IBRACON de Estruturas e Materiais
repository.name.fl_str_mv Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)
repository.mail.fl_str_mv editores.riem@gmail.com||arlene@ibracon.org.br
_version_ 1754193606036422656