Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges

Detalhes bibliográficos
Autor(a) principal: Amaral,P. G. C.
Data de Publicação: 2017
Outros Autores: Mazzilli,C. E. N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista IBRACON de Estruturas e Materiais
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000400937
Resumo: ABSTRACT This paper resorts to a simplified dynamic analysis methodology for the study of vibrations in railway bridges produced by the passage of a typical passenger train, or EUT (Electric Unit Train). It starts from a model with fifteen degrees-of-freedom, namely vertical (bounce) and horizontal displacements (sway) and rotations about the longitudinal (roll), transverse (pitch) and vertical (yaw) axes. In this methodology, dynamic models of the train and the bridge are assumed to be initially uncoupled, yet being bound by the interaction train-bridge forces. Thus, the loads are evaluated for the train running on a rigid and fixed deck, considering geometric irregularities, different for each rail line, in both the vertical and horizontal track planes, as well as in the wheels. The contact forces are statically condensed at the vehicle’s centre of gravity and applied on a simplified 3D beam model. To represent the train passage over the bridge, functions are used to describe the interaction forces at each node of the beam model, as time evolves. Thus, it is possible to identify the dynamic response caused by the geometric irregularities and also evaluate the dynamic amplification obtained for any internal force, which is compared to the impact coefficient proposed by the Brazilian standards for the design of railway bridges (NBR 7187), used in quasi-static analysis. For the sake of an illustration, a thirty-six-metre-span concrete bridge with box girder section was considered. A study was carried out to find out the parameters of the irregularity functions that could potentially lead to maximal amplification of internal forces in the bridge.
id IBRACON-1_a6ae7e6df67fd0fc01517e89178832fe
oai_identifier_str oai:scielo:S1983-41952017000400937
network_acronym_str IBRACON-1
network_name_str Revista IBRACON de Estruturas e Materiais
repository_id_str
spelling Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridgesdynamic analysisrailway bridgesgeometric irregularitiesABSTRACT This paper resorts to a simplified dynamic analysis methodology for the study of vibrations in railway bridges produced by the passage of a typical passenger train, or EUT (Electric Unit Train). It starts from a model with fifteen degrees-of-freedom, namely vertical (bounce) and horizontal displacements (sway) and rotations about the longitudinal (roll), transverse (pitch) and vertical (yaw) axes. In this methodology, dynamic models of the train and the bridge are assumed to be initially uncoupled, yet being bound by the interaction train-bridge forces. Thus, the loads are evaluated for the train running on a rigid and fixed deck, considering geometric irregularities, different for each rail line, in both the vertical and horizontal track planes, as well as in the wheels. The contact forces are statically condensed at the vehicle’s centre of gravity and applied on a simplified 3D beam model. To represent the train passage over the bridge, functions are used to describe the interaction forces at each node of the beam model, as time evolves. Thus, it is possible to identify the dynamic response caused by the geometric irregularities and also evaluate the dynamic amplification obtained for any internal force, which is compared to the impact coefficient proposed by the Brazilian standards for the design of railway bridges (NBR 7187), used in quasi-static analysis. For the sake of an illustration, a thirty-six-metre-span concrete bridge with box girder section was considered. A study was carried out to find out the parameters of the irregularity functions that could potentially lead to maximal amplification of internal forces in the bridge.IBRACON - Instituto Brasileiro do Concreto2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000400937Revista IBRACON de Estruturas e Materiais v.10 n.4 2017reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952017000400010info:eu-repo/semantics/openAccessAmaral,P. G. C.Mazzilli,C. E. N.eng2017-08-31T00:00:00Zoai:scielo:S1983-41952017000400937Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2017-08-31T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false
dc.title.none.fl_str_mv Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
title Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
spellingShingle Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
Amaral,P. G. C.
dynamic analysis
railway bridges
geometric irregularities
title_short Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
title_full Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
title_fullStr Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
title_full_unstemmed Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
title_sort Characterization of track geometric imperfections leading to maximal dynamic amplification of internal forces in railway bridges
author Amaral,P. G. C.
author_facet Amaral,P. G. C.
Mazzilli,C. E. N.
author_role author
author2 Mazzilli,C. E. N.
author2_role author
dc.contributor.author.fl_str_mv Amaral,P. G. C.
Mazzilli,C. E. N.
dc.subject.por.fl_str_mv dynamic analysis
railway bridges
geometric irregularities
topic dynamic analysis
railway bridges
geometric irregularities
description ABSTRACT This paper resorts to a simplified dynamic analysis methodology for the study of vibrations in railway bridges produced by the passage of a typical passenger train, or EUT (Electric Unit Train). It starts from a model with fifteen degrees-of-freedom, namely vertical (bounce) and horizontal displacements (sway) and rotations about the longitudinal (roll), transverse (pitch) and vertical (yaw) axes. In this methodology, dynamic models of the train and the bridge are assumed to be initially uncoupled, yet being bound by the interaction train-bridge forces. Thus, the loads are evaluated for the train running on a rigid and fixed deck, considering geometric irregularities, different for each rail line, in both the vertical and horizontal track planes, as well as in the wheels. The contact forces are statically condensed at the vehicle’s centre of gravity and applied on a simplified 3D beam model. To represent the train passage over the bridge, functions are used to describe the interaction forces at each node of the beam model, as time evolves. Thus, it is possible to identify the dynamic response caused by the geometric irregularities and also evaluate the dynamic amplification obtained for any internal force, which is compared to the impact coefficient proposed by the Brazilian standards for the design of railway bridges (NBR 7187), used in quasi-static analysis. For the sake of an illustration, a thirty-six-metre-span concrete bridge with box girder section was considered. A study was carried out to find out the parameters of the irregularity functions that could potentially lead to maximal amplification of internal forces in the bridge.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000400937
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952017000400937
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1983-41952017000400010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
publisher.none.fl_str_mv IBRACON - Instituto Brasileiro do Concreto
dc.source.none.fl_str_mv Revista IBRACON de Estruturas e Materiais v.10 n.4 2017
reponame:Revista IBRACON de Estruturas e Materiais
instname:Instituto Brasileiro do Concreto (IBRACON)
instacron:IBRACON
instname_str Instituto Brasileiro do Concreto (IBRACON)
instacron_str IBRACON
institution IBRACON
reponame_str Revista IBRACON de Estruturas e Materiais
collection Revista IBRACON de Estruturas e Materiais
repository.name.fl_str_mv Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)
repository.mail.fl_str_mv editores.riem@gmail.com||arlene@ibracon.org.br
_version_ 1754193605220630528