Fire behavior of shallow prestressed hollow core slabs from computational modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952020000200398 |
Resumo: | Abstract Prestressed hollow core slabs are one of the structural systems whose use has increased the most in recent years in Brazil due to its efficiency and versatility. They can be used in many types of structural systems, such as masonry, precast concrete, cast-in-place concrete and steel structures. However, there are few analytical models to evaluate the fire behavior of hollow core slabs. In a simplified way, the fire resistance is evaluated indirectly through the minimum distance of the surface in contact with fire to the reinforcement axis. In this paper, some numerical models in finite element software were developed to analyze the variation of temperature with fire exposure time of shallow hollow core slabs, focusing on the presence of voids in the transversal section of the slab. The 500 °C isotherm method applied to 20 cm high slabs confirmed the Standard Fire Resistance obtained from the tabular method. However, when applied to shallow prestressed hollow core slabs that are 16 cm high, the 500 °C isotherm method indicated that the Standard Fire Resistance of these slabs is lower than values obtained from tabular methods. |
id |
IBRACON-1_a6c5dcd1fc4ea68712e53c981d5e6fb5 |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952020000200398 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Fire behavior of shallow prestressed hollow core slabs from computational modelingshallow hollow-core slabsfire resistanceprecast concretecomputational modelingAbstract Prestressed hollow core slabs are one of the structural systems whose use has increased the most in recent years in Brazil due to its efficiency and versatility. They can be used in many types of structural systems, such as masonry, precast concrete, cast-in-place concrete and steel structures. However, there are few analytical models to evaluate the fire behavior of hollow core slabs. In a simplified way, the fire resistance is evaluated indirectly through the minimum distance of the surface in contact with fire to the reinforcement axis. In this paper, some numerical models in finite element software were developed to analyze the variation of temperature with fire exposure time of shallow hollow core slabs, focusing on the presence of voids in the transversal section of the slab. The 500 °C isotherm method applied to 20 cm high slabs confirmed the Standard Fire Resistance obtained from the tabular method. However, when applied to shallow prestressed hollow core slabs that are 16 cm high, the 500 °C isotherm method indicated that the Standard Fire Resistance of these slabs is lower than values obtained from tabular methods.IBRACON - Instituto Brasileiro do Concreto2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952020000200398Revista IBRACON de Estruturas e Materiais v.13 n.2 2020reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952020000200011info:eu-repo/semantics/openAccessARAÚJO,D. L.PINTO,G. D. C.eng2020-05-28T00:00:00Zoai:scielo:S1983-41952020000200398Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2020-05-28T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
title |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
spellingShingle |
Fire behavior of shallow prestressed hollow core slabs from computational modeling ARAÚJO,D. L. shallow hollow-core slabs fire resistance precast concrete computational modeling |
title_short |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
title_full |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
title_fullStr |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
title_full_unstemmed |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
title_sort |
Fire behavior of shallow prestressed hollow core slabs from computational modeling |
author |
ARAÚJO,D. L. |
author_facet |
ARAÚJO,D. L. PINTO,G. D. C. |
author_role |
author |
author2 |
PINTO,G. D. C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
ARAÚJO,D. L. PINTO,G. D. C. |
dc.subject.por.fl_str_mv |
shallow hollow-core slabs fire resistance precast concrete computational modeling |
topic |
shallow hollow-core slabs fire resistance precast concrete computational modeling |
description |
Abstract Prestressed hollow core slabs are one of the structural systems whose use has increased the most in recent years in Brazil due to its efficiency and versatility. They can be used in many types of structural systems, such as masonry, precast concrete, cast-in-place concrete and steel structures. However, there are few analytical models to evaluate the fire behavior of hollow core slabs. In a simplified way, the fire resistance is evaluated indirectly through the minimum distance of the surface in contact with fire to the reinforcement axis. In this paper, some numerical models in finite element software were developed to analyze the variation of temperature with fire exposure time of shallow hollow core slabs, focusing on the presence of voids in the transversal section of the slab. The 500 °C isotherm method applied to 20 cm high slabs confirmed the Standard Fire Resistance obtained from the tabular method. However, when applied to shallow prestressed hollow core slabs that are 16 cm high, the 500 °C isotherm method indicated that the Standard Fire Resistance of these slabs is lower than values obtained from tabular methods. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952020000200398 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952020000200398 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952020000200011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.13 n.2 2020 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193606073122816 |