Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000400210 |
Resumo: | abstract: Innovative composite structures have been intensively studied towards meeting the demands of civil construction. An example of such structures is slim floor, comprised of concrete or composite slabs positioned at the height of steel beams, reducing the total height of the floor. In Brazil, studies on this system are still in early stages, and due to the lack of both experience and national normative codes, it is hardly used in civil construction. Given the possible combinations between concrete slabs and steel beams, the system exhibits different typologies. This article reports a numerical investigation on two typologies of slim floor, namely Asymmetric Slimflor Beam (ASB), composed of an asymmetric I beam, and Composite Slim-Floor Beam (CoSFB), comprised of an asymmetric beam with small openings at the top of its web. Nonlinear numerical models of ASB and CoSFB typologies were developed by Finite Element-based software ABAQUS®. The models were calibrated with the use of experimental studies from the literature, and showed high accuracy and good results. After calibration, the materials properties and geometric dimensions of the models, such as height and thickness, were standardized for a comparison of the typologies. The comparative analysis showed the particular characteristics of CoSFB promoted higher stiffness and flexural capacity compared to ASB, and a parametric analysis evaluated the influence of steel and concrete parameters on the flexural behavior of the typologies. The parametric study revealed the steel parameters exerted a more substantial influence on the slim floors behavior than the concrete ones. |
id |
IBRACON-1_c1808e78c970951e06d708e0aa0492bd |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952021000400210 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologiescomposite structuresslim floorAsymmetric Slimflor Beam (ASB)Composite Slim-Floor Beam (CoSFB)numerical analysisabstract: Innovative composite structures have been intensively studied towards meeting the demands of civil construction. An example of such structures is slim floor, comprised of concrete or composite slabs positioned at the height of steel beams, reducing the total height of the floor. In Brazil, studies on this system are still in early stages, and due to the lack of both experience and national normative codes, it is hardly used in civil construction. Given the possible combinations between concrete slabs and steel beams, the system exhibits different typologies. This article reports a numerical investigation on two typologies of slim floor, namely Asymmetric Slimflor Beam (ASB), composed of an asymmetric I beam, and Composite Slim-Floor Beam (CoSFB), comprised of an asymmetric beam with small openings at the top of its web. Nonlinear numerical models of ASB and CoSFB typologies were developed by Finite Element-based software ABAQUS®. The models were calibrated with the use of experimental studies from the literature, and showed high accuracy and good results. After calibration, the materials properties and geometric dimensions of the models, such as height and thickness, were standardized for a comparison of the typologies. The comparative analysis showed the particular characteristics of CoSFB promoted higher stiffness and flexural capacity compared to ASB, and a parametric analysis evaluated the influence of steel and concrete parameters on the flexural behavior of the typologies. The parametric study revealed the steel parameters exerted a more substantial influence on the slim floors behavior than the concrete ones.IBRACON - Instituto Brasileiro do Concreto2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000400210Revista IBRACON de Estruturas e Materiais v.14 n.4 2021reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952021000400011info:eu-repo/semantics/openAccessBorghi,Tainá MascarenhasOliveira,Lucas Antônio MoraisEl Debs,Ana Lucia Homce de Cresceeng2021-05-19T00:00:00Zoai:scielo:S1983-41952021000400210Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2021-05-19T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
title |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
spellingShingle |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies Borghi,Tainá Mascarenhas composite structures slim floor Asymmetric Slimflor Beam (ASB) Composite Slim-Floor Beam (CoSFB) numerical analysis |
title_short |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
title_full |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
title_fullStr |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
title_full_unstemmed |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
title_sort |
Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies |
author |
Borghi,Tainá Mascarenhas |
author_facet |
Borghi,Tainá Mascarenhas Oliveira,Lucas Antônio Morais El Debs,Ana Lucia Homce de Cresce |
author_role |
author |
author2 |
Oliveira,Lucas Antônio Morais El Debs,Ana Lucia Homce de Cresce |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Borghi,Tainá Mascarenhas Oliveira,Lucas Antônio Morais El Debs,Ana Lucia Homce de Cresce |
dc.subject.por.fl_str_mv |
composite structures slim floor Asymmetric Slimflor Beam (ASB) Composite Slim-Floor Beam (CoSFB) numerical analysis |
topic |
composite structures slim floor Asymmetric Slimflor Beam (ASB) Composite Slim-Floor Beam (CoSFB) numerical analysis |
description |
abstract: Innovative composite structures have been intensively studied towards meeting the demands of civil construction. An example of such structures is slim floor, comprised of concrete or composite slabs positioned at the height of steel beams, reducing the total height of the floor. In Brazil, studies on this system are still in early stages, and due to the lack of both experience and national normative codes, it is hardly used in civil construction. Given the possible combinations between concrete slabs and steel beams, the system exhibits different typologies. This article reports a numerical investigation on two typologies of slim floor, namely Asymmetric Slimflor Beam (ASB), composed of an asymmetric I beam, and Composite Slim-Floor Beam (CoSFB), comprised of an asymmetric beam with small openings at the top of its web. Nonlinear numerical models of ASB and CoSFB typologies were developed by Finite Element-based software ABAQUS®. The models were calibrated with the use of experimental studies from the literature, and showed high accuracy and good results. After calibration, the materials properties and geometric dimensions of the models, such as height and thickness, were standardized for a comparison of the typologies. The comparative analysis showed the particular characteristics of CoSFB promoted higher stiffness and flexural capacity compared to ASB, and a parametric analysis evaluated the influence of steel and concrete parameters on the flexural behavior of the typologies. The parametric study revealed the steel parameters exerted a more substantial influence on the slim floors behavior than the concrete ones. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000400210 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000400210 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952021000400011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.14 n.4 2021 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193606499893248 |