Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000400757 |
Resumo: | Abstract Most of the engineering problems involving structural elements of steel-concrete composite beam type are approximations of the structural problem involving concrete plates connected by connectors to steel beams. Technical standards allow the replacement of the concrete plate element by a beam element by adopting a reduction in the width of the plate element known as effective width. The effective width is obtained, in most technical norms, taking into account only the parameters of beam span length and distance between adjacent beams. Numerical and experimental works found in the literature show that this effective width depends on several other parameters, such as the width and thickness of the concrete slab, and the type of loading. The objective of this work is to verify the influence of the partial interaction in the evaluation of the effective width of composite beams formed by a concrete slab connected to a steel beam with deformable connection, being used in numerical simulation three types of finite elements: a plate element for nonlinear analysis of the concrete slab; a bar element for non-linear analysis of beams with cross-section defined by a polygon; and an interface element which connects the plate and beam elements, simulating the deformation effect of the shear connectors. In the studied examples, it was found that the reduction of the shear connection stiffness at the interface between the concrete slab and the steel beam leads to a decrease in the shear lag effect and, consequently, makes the effective width of the concrete slab closer to the its real width. In another example, curves are constructed to define the effective width of a composite beam with medium stiffness. Considering maximum stresses and maximum displacements, these curves are obtained by forcing the equivalence of the approximate model with the model closest to the real problem. |
id |
IBRACON-1_e50e6c593eadc9e889a7c4b41092afa9 |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952018000400757 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beamseffective widthparcial interactionstiffened concrete plateAbstract Most of the engineering problems involving structural elements of steel-concrete composite beam type are approximations of the structural problem involving concrete plates connected by connectors to steel beams. Technical standards allow the replacement of the concrete plate element by a beam element by adopting a reduction in the width of the plate element known as effective width. The effective width is obtained, in most technical norms, taking into account only the parameters of beam span length and distance between adjacent beams. Numerical and experimental works found in the literature show that this effective width depends on several other parameters, such as the width and thickness of the concrete slab, and the type of loading. The objective of this work is to verify the influence of the partial interaction in the evaluation of the effective width of composite beams formed by a concrete slab connected to a steel beam with deformable connection, being used in numerical simulation three types of finite elements: a plate element for nonlinear analysis of the concrete slab; a bar element for non-linear analysis of beams with cross-section defined by a polygon; and an interface element which connects the plate and beam elements, simulating the deformation effect of the shear connectors. In the studied examples, it was found that the reduction of the shear connection stiffness at the interface between the concrete slab and the steel beam leads to a decrease in the shear lag effect and, consequently, makes the effective width of the concrete slab closer to the its real width. In another example, curves are constructed to define the effective width of a composite beam with medium stiffness. Considering maximum stresses and maximum displacements, these curves are obtained by forcing the equivalence of the approximate model with the model closest to the real problem.IBRACON - Instituto Brasileiro do Concreto2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000400757Revista IBRACON de Estruturas e Materiais v.11 n.4 2018reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952018000400007info:eu-repo/semantics/openAccessSILVA,A. R.DIAS,L. E. S.eng2018-09-04T00:00:00Zoai:scielo:S1983-41952018000400757Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2018-09-04T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
title |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
spellingShingle |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams SILVA,A. R. effective width parcial interaction stiffened concrete plate |
title_short |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
title_full |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
title_fullStr |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
title_full_unstemmed |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
title_sort |
Numerical analysis of the effect of partial interaction in the evaluation of the effective width of composite beams |
author |
SILVA,A. R. |
author_facet |
SILVA,A. R. DIAS,L. E. S. |
author_role |
author |
author2 |
DIAS,L. E. S. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
SILVA,A. R. DIAS,L. E. S. |
dc.subject.por.fl_str_mv |
effective width parcial interaction stiffened concrete plate |
topic |
effective width parcial interaction stiffened concrete plate |
description |
Abstract Most of the engineering problems involving structural elements of steel-concrete composite beam type are approximations of the structural problem involving concrete plates connected by connectors to steel beams. Technical standards allow the replacement of the concrete plate element by a beam element by adopting a reduction in the width of the plate element known as effective width. The effective width is obtained, in most technical norms, taking into account only the parameters of beam span length and distance between adjacent beams. Numerical and experimental works found in the literature show that this effective width depends on several other parameters, such as the width and thickness of the concrete slab, and the type of loading. The objective of this work is to verify the influence of the partial interaction in the evaluation of the effective width of composite beams formed by a concrete slab connected to a steel beam with deformable connection, being used in numerical simulation three types of finite elements: a plate element for nonlinear analysis of the concrete slab; a bar element for non-linear analysis of beams with cross-section defined by a polygon; and an interface element which connects the plate and beam elements, simulating the deformation effect of the shear connectors. In the studied examples, it was found that the reduction of the shear connection stiffness at the interface between the concrete slab and the steel beam leads to a decrease in the shear lag effect and, consequently, makes the effective width of the concrete slab closer to the its real width. In another example, curves are constructed to define the effective width of a composite beam with medium stiffness. Considering maximum stresses and maximum displacements, these curves are obtained by forcing the equivalence of the approximate model with the model closest to the real problem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000400757 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952018000400757 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952018000400007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.11 n.4 2018 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193605555126272 |