Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200209 |
Resumo: | Abstract According to previous studies, fine materials originated from reactive aggregates can act as a Alkali-Aggregate Reaction mitigator, having its effectiveness dependent on their reactivity, fineness and added content. Thus, the present work aims to study if reactive granitic rock fines can mitigate or reduce the AAR and how the fineness of the material influences its mitigation capacity. For this purpose, granitic rock fines (GRF) from 2 different deposits and Pyrex glass fines (PGF) were tested as concrete addition. Each one of these fines were used in two different finesses and added to the concrete in the contents of 20% by mass of cement. It was observed that the addition of GRF did not affect the physical-mechanical properties of concrete and allowed the reduction in the AAR, being more accentuated with the increase of its specific surface. |
id |
IBRACON-1_f1410e5be4dd15df7aea17f944bb381d |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952021000200209 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materialsalkali-aggregate reactiongranitic rock finesdurabilityperformanceAbstract According to previous studies, fine materials originated from reactive aggregates can act as a Alkali-Aggregate Reaction mitigator, having its effectiveness dependent on their reactivity, fineness and added content. Thus, the present work aims to study if reactive granitic rock fines can mitigate or reduce the AAR and how the fineness of the material influences its mitigation capacity. For this purpose, granitic rock fines (GRF) from 2 different deposits and Pyrex glass fines (PGF) were tested as concrete addition. Each one of these fines were used in two different finesses and added to the concrete in the contents of 20% by mass of cement. It was observed that the addition of GRF did not affect the physical-mechanical properties of concrete and allowed the reduction in the AAR, being more accentuated with the increase of its specific surface.IBRACON - Instituto Brasileiro do Concreto2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200209Revista IBRACON de Estruturas e Materiais v.14 n.2 2021reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952021000200003info:eu-repo/semantics/openAccessSantos,Bruna SilvaRibeiro,Daniel Véraseng2021-01-21T00:00:00Zoai:scielo:S1983-41952021000200209Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2021-01-21T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
title |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
spellingShingle |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials Santos,Bruna Silva alkali-aggregate reaction granitic rock fines durability performance |
title_short |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
title_full |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
title_fullStr |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
title_full_unstemmed |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
title_sort |
Influence of granitic rock fines addition in the alkali-aggregate reaction (AAR) in cementitious materials |
author |
Santos,Bruna Silva |
author_facet |
Santos,Bruna Silva Ribeiro,Daniel Véras |
author_role |
author |
author2 |
Ribeiro,Daniel Véras |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santos,Bruna Silva Ribeiro,Daniel Véras |
dc.subject.por.fl_str_mv |
alkali-aggregate reaction granitic rock fines durability performance |
topic |
alkali-aggregate reaction granitic rock fines durability performance |
description |
Abstract According to previous studies, fine materials originated from reactive aggregates can act as a Alkali-Aggregate Reaction mitigator, having its effectiveness dependent on their reactivity, fineness and added content. Thus, the present work aims to study if reactive granitic rock fines can mitigate or reduce the AAR and how the fineness of the material influences its mitigation capacity. For this purpose, granitic rock fines (GRF) from 2 different deposits and Pyrex glass fines (PGF) were tested as concrete addition. Each one of these fines were used in two different finesses and added to the concrete in the contents of 20% by mass of cement. It was observed that the addition of GRF did not affect the physical-mechanical properties of concrete and allowed the reduction in the AAR, being more accentuated with the increase of its specific surface. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200209 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952021000200209 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952021000200003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.14 n.2 2021 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193606447464448 |