Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon

Detalhes bibliográficos
Autor(a) principal: Cavalcanti Narcizo, Luiza
Data de Publicação: 2019
Outros Autores: Libonati, Renata, Lemos Maia Santos, Filippe, Trigo, Ricardo, Geirinhas, João Lucas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Biodiversidade Brasileira
Texto Completo: https://revistaeletronica.icmbio.gov.br/BioBR/article/view/1069
Resumo: Extreme drought events merely are no longer enough to provide the framework that explains exacerbated impacts of atmospheric conditions in vegetation fires. In particular, the coupled effect of Heat Waves (HW) induced by positive feedbacks between soil and atmosphere caused by drought patterns, is shown to be more likely to enhance flammability conditions. Thus, understanding the concurrence of both extreme climatic events (droughts and HWs) is crucial to quantify ecological and socioeconomic impacts of fire related to ecosystem services, human health, climate and conservation. Although these compound events are increasingly being subject of study around the globe, they are poorly explored over South America, in particular over the Amazon. Therefore, our first goal here is to analyze the simultaneous occurrence of heat waves during two major extreme droughts in Amazon rainforest, namely during the outstanding 2005 and 2010 events. Moreover, we aim to quantify the impact of these compound events on fire incidence and intensity. To accomplish these goals, we use meteorological fields from ERA-5 reanalysis, remote sensing platforms and in-situ data. HW events were assessed by analyzing the associated synoptic patterns and heat wave indexes based on temperature data from surface meteorological stations, from 1961 to 2014. The spatial and temporal patterns of fire activity were analyzed between 2003 and 2017, based on information obtained from AQUA MODIS Standard Fire products 1 km collection 6 of active fire (AF) and fire radiative power (FRP) datasets. Results show an increase of HWs during drought periods along with a rise in number of these events over the last two decades at the Amazon, presenting pikes of occurrence and extension on 2005 and 2010. We show that fire occurs more frequently during these compound events than if these events occur independently. Moreover, an enhancement in fire intensity is also verified when HWs and drought occur simultaneously.
id ICMBIO-1_e4632b37febabaed8ce389bb61a9c809
oai_identifier_str oai:revistaeletronica.icmbio.gov.br:article/1069
network_acronym_str ICMBIO-1
network_name_str Biodiversidade Brasileira
repository_id_str
spelling Compound Effects of Drought and Heat Waves on Fire Incidence Over the AmazonCompound Effects of Drought and Heat Waves on Fire Incidence Over the AmazonCompound Effects of Drought and Heat Waves on Fire Incidence Over the AmazonExtreme drought events merely are no longer enough to provide the framework that explains exacerbated impacts of atmospheric conditions in vegetation fires. In particular, the coupled effect of Heat Waves (HW) induced by positive feedbacks between soil and atmosphere caused by drought patterns, is shown to be more likely to enhance flammability conditions. Thus, understanding the concurrence of both extreme climatic events (droughts and HWs) is crucial to quantify ecological and socioeconomic impacts of fire related to ecosystem services, human health, climate and conservation. Although these compound events are increasingly being subject of study around the globe, they are poorly explored over South America, in particular over the Amazon. Therefore, our first goal here is to analyze the simultaneous occurrence of heat waves during two major extreme droughts in Amazon rainforest, namely during the outstanding 2005 and 2010 events. Moreover, we aim to quantify the impact of these compound events on fire incidence and intensity. To accomplish these goals, we use meteorological fields from ERA-5 reanalysis, remote sensing platforms and in-situ data. HW events were assessed by analyzing the associated synoptic patterns and heat wave indexes based on temperature data from surface meteorological stations, from 1961 to 2014. The spatial and temporal patterns of fire activity were analyzed between 2003 and 2017, based on information obtained from AQUA MODIS Standard Fire products 1 km collection 6 of active fire (AF) and fire radiative power (FRP) datasets. Results show an increase of HWs during drought periods along with a rise in number of these events over the last two decades at the Amazon, presenting pikes of occurrence and extension on 2005 and 2010. We show that fire occurs more frequently during these compound events than if these events occur independently. Moreover, an enhancement in fire intensity is also verified when HWs and drought occur simultaneously.Extreme drought events merely are no longer enough to provide the framework that explains exacerbated impacts of atmospheric conditions in vegetation fires. In particular, the coupled effect of Heat Waves (HW) induced by positive feedbacks between soil and atmosphere caused by drought patterns, is shown to be more likely to enhance flammability conditions. Thus, understanding the concurrence of both extreme climatic events (droughts and HWs) is crucial to quantify ecological and socioeconomic impacts of fire related to ecosystem services, human health, climate and conservation. Although these compound events are increasingly being subject of study around the globe, they are poorly explored over South America, in particular over the Amazon. Therefore, our first goal here is to analyze the simultaneous occurrence of heat waves during two major extreme droughts in Amazon rainforest, namely during the outstanding 2005 and 2010 events. Moreover, we aim to quantify the impact of these compound events on fire incidence and intensity. To accomplish these goals, we use meteorological fields from ERA-5 reanalysis, remote sensing platforms and in-situ data. HW events were assessed by analyzing the associated synoptic patterns and heat wave indexes based on temperature data from surface meteorological stations, from 1961 to 2014. The spatial and temporal patterns of fire activity were analyzed between 2003 and 2017, based on information obtained from AQUA MODIS Standard Fire products 1 km collection 6 of active fire (AF) and fire radiative power (FRP) datasets. Results show an increase of HWs during drought periods along with a rise in number of these events over the last two decades at the Amazon, presenting pikes of occurrence and extension on 2005 and 2010. We show that fire occurs more frequently during these compound events than if these events occur independently. Moreover, an enhancement in fire intensity is also verified when HWs and drought occur simultaneously.Extreme drought events merely are no longer enough to provide the framework that explains exacerbated impacts of atmospheric conditions in vegetation fires. In particular, the coupled effect of Heat Waves (HW) induced by positive feedbacks between soil and atmosphere caused by drought patterns, is shown to be more likely to enhance flammability conditions. Thus, understanding the concurrence of both extreme climatic events (droughts and HWs) is crucial to quantify ecological and socioeconomic impacts of fire related to ecosystem services, human health, climate and conservation. Although these compound events are increasingly being subject of study around the globe, they are poorly explored over South America, in particular over the Amazon. Therefore, our first goal here is to analyze the simultaneous occurrence of heat waves during two major extreme droughts in Amazon rainforest, namely during the outstanding 2005 and 2010 events. Moreover, we aim to quantify the impact of these compound events on fire incidence and intensity. To accomplish these goals, we use meteorological fields from ERA-5 reanalysis, remote sensing platforms and in-situ data. HW events were assessed by analyzing the associated synoptic patterns and heat wave indexes based on temperature data from surface meteorological stations, from 1961 to 2014. The spatial and temporal patterns of fire activity were analyzed between 2003 and 2017, based on information obtained from AQUA MODIS Standard Fire products 1 km collection 6 of active fire (AF) and fire radiative power (FRP) datasets. Results show an increase of HWs during drought periods along with a rise in number of these events over the last two decades at the Amazon, presenting pikes of occurrence and extension on 2005 and 2010. We show that fire occurs more frequently during these compound events than if these events occur independently. Moreover, an enhancement in fire intensity is also verified when HWs and drought occur simultaneously.Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)2019-11-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistaeletronica.icmbio.gov.br/BioBR/article/view/106910.37002/biodiversidadebrasileira.v9i1.1069Biodiversidade Brasileira ; v. 9 n. 1 (2019): Wildfire Conference: Resumos; 167Biodiversidade Brasileira ; Vol. 9 No. 1 (2019): Wildfire Conference: Resumos; 167Biodiversidade Brasileira ; Vol. 9 Núm. 1 (2019): Wildfire Conference: Resumos; 1672236-288610.37002/biodiversidadebrasileira.v9i1reponame:Biodiversidade Brasileirainstname:Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO)instacron:ICMBIOenghttps://revistaeletronica.icmbio.gov.br/BioBR/article/view/1069/815Copyright (c) 2021 Biodiversidade Brasileira - BioBrasilhttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessCavalcanti Narcizo, LuizaLibonati, RenataLemos Maia Santos, FilippeTrigo, RicardoGeirinhas, João Lucas2023-05-09T12:56:02Zoai:revistaeletronica.icmbio.gov.br:article/1069Revistahttps://revistaeletronica.icmbio.gov.br/BioBRPUBhttps://revistaeletronica.icmbio.gov.br/BioBR/oaifernanda.oliveto@icmbio.gov.br || katia.ribeiro@icmbio.gov.br2236-28862236-2886opendoar:2023-05-09T12:56:02Biodiversidade Brasileira - Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO)false
dc.title.none.fl_str_mv Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
title Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
spellingShingle Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
Cavalcanti Narcizo, Luiza
title_short Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
title_full Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
title_fullStr Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
title_full_unstemmed Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
title_sort Compound Effects of Drought and Heat Waves on Fire Incidence Over the Amazon
author Cavalcanti Narcizo, Luiza
author_facet Cavalcanti Narcizo, Luiza
Libonati, Renata
Lemos Maia Santos, Filippe
Trigo, Ricardo
Geirinhas, João Lucas
author_role author
author2 Libonati, Renata
Lemos Maia Santos, Filippe
Trigo, Ricardo
Geirinhas, João Lucas
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Cavalcanti Narcizo, Luiza
Libonati, Renata
Lemos Maia Santos, Filippe
Trigo, Ricardo
Geirinhas, João Lucas
description Extreme drought events merely are no longer enough to provide the framework that explains exacerbated impacts of atmospheric conditions in vegetation fires. In particular, the coupled effect of Heat Waves (HW) induced by positive feedbacks between soil and atmosphere caused by drought patterns, is shown to be more likely to enhance flammability conditions. Thus, understanding the concurrence of both extreme climatic events (droughts and HWs) is crucial to quantify ecological and socioeconomic impacts of fire related to ecosystem services, human health, climate and conservation. Although these compound events are increasingly being subject of study around the globe, they are poorly explored over South America, in particular over the Amazon. Therefore, our first goal here is to analyze the simultaneous occurrence of heat waves during two major extreme droughts in Amazon rainforest, namely during the outstanding 2005 and 2010 events. Moreover, we aim to quantify the impact of these compound events on fire incidence and intensity. To accomplish these goals, we use meteorological fields from ERA-5 reanalysis, remote sensing platforms and in-situ data. HW events were assessed by analyzing the associated synoptic patterns and heat wave indexes based on temperature data from surface meteorological stations, from 1961 to 2014. The spatial and temporal patterns of fire activity were analyzed between 2003 and 2017, based on information obtained from AQUA MODIS Standard Fire products 1 km collection 6 of active fire (AF) and fire radiative power (FRP) datasets. Results show an increase of HWs during drought periods along with a rise in number of these events over the last two decades at the Amazon, presenting pikes of occurrence and extension on 2005 and 2010. We show that fire occurs more frequently during these compound events than if these events occur independently. Moreover, an enhancement in fire intensity is also verified when HWs and drought occur simultaneously.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistaeletronica.icmbio.gov.br/BioBR/article/view/1069
10.37002/biodiversidadebrasileira.v9i1.1069
url https://revistaeletronica.icmbio.gov.br/BioBR/article/view/1069
identifier_str_mv 10.37002/biodiversidadebrasileira.v9i1.1069
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistaeletronica.icmbio.gov.br/BioBR/article/view/1069/815
dc.rights.driver.fl_str_mv Copyright (c) 2021 Biodiversidade Brasileira - BioBrasil
https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Biodiversidade Brasileira - BioBrasil
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)
publisher.none.fl_str_mv Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)
dc.source.none.fl_str_mv Biodiversidade Brasileira ; v. 9 n. 1 (2019): Wildfire Conference: Resumos; 167
Biodiversidade Brasileira ; Vol. 9 No. 1 (2019): Wildfire Conference: Resumos; 167
Biodiversidade Brasileira ; Vol. 9 Núm. 1 (2019): Wildfire Conference: Resumos; 167
2236-2886
10.37002/biodiversidadebrasileira.v9i1
reponame:Biodiversidade Brasileira
instname:Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO)
instacron:ICMBIO
instname_str Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO)
instacron_str ICMBIO
institution ICMBIO
reponame_str Biodiversidade Brasileira
collection Biodiversidade Brasileira
repository.name.fl_str_mv Biodiversidade Brasileira - Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO)
repository.mail.fl_str_mv fernanda.oliveto@icmbio.gov.br || katia.ribeiro@icmbio.gov.br
_version_ 1797042391521165312