The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Digital do Instituto Evandro Chagas (Patuá) |
Texto Completo: | https://patua.iec.gov.br/handle/iec/4249 |
Resumo: | This work presents a new procedure to synthesize ruthenium–phthalocyanine complexes and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I) (Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The triplet excited-state lifetimes of (I) measured by nanosecond transient absorption showed that two processes occurred, one around 15 ns and the other around 3.8 μs. Axial ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted from secondary reactions of singlet oxygen in the presence of the ruthenium complex. We also investigate how axial ligands in the ruthenium–phthalocyanine complexes affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at 1 μmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%, showing that (I) was more active than (II) at the same concentration. Furthermore, (II) was detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium–phthalocyanine complexes point to the potential use of (I) as a metal-based drug in clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the ruthenium phthalocyanine complexes. |
id |
IEC-2_5b4ef1c8a42214e5efc044a9461a24d8 |
---|---|
oai_identifier_str |
oai:patua.iec.gov.br:iec/4249 |
network_acronym_str |
IEC-2 |
network_name_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
repository_id_str |
|
spelling |
Martins, Tássia JoiNegri, Laisa BonafimPernomian, LaenaFaial, Kelson do Carmo FreitasXue, CongcongAkhimie, Regina NHamblin, Michael RTurro, ClaudiaSilva, Roberto S. da2021-02-08T16:45:06Z2021-02-08T16:45:06Z2021MARTINS, Tássia Joi et al. The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties. Frontiers in Molecular Biosciences, v. 7, p. 1-12, Jan. 2021. DOI: https://doi.org/10.3389/fmolb.2020.595830. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835839/pdf/fmolb-07-595830.pdf.2296-889Xhttps://patua.iec.gov.br/handle/iec/424910.3389/fmolb.2020.595830This work presents a new procedure to synthesize ruthenium–phthalocyanine complexes and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I) (Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The triplet excited-state lifetimes of (I) measured by nanosecond transient absorption showed that two processes occurred, one around 15 ns and the other around 3.8 μs. Axial ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted from secondary reactions of singlet oxygen in the presence of the ruthenium complex. We also investigate how axial ligands in the ruthenium–phthalocyanine complexes affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at 1 μmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%, showing that (I) was more active than (II) at the same concentration. Furthermore, (II) was detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium–phthalocyanine complexes point to the potential use of (I) as a metal-based drug in clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the ruthenium phthalocyanine complexes.This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2019/19448-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).University of São Paulo. Faculty of Philosophy, Sciences and Letters of Ribeirão Preto. Department of Chemistry. Ribeirão Preto, SP, Brazil / The Ohio State University. Department of Chemistry and Biochemistry. Columbus, OH, United States.University of São Paulo. School of Pharmaceutical Sciences of Ribeirão Preto. Department of Physics and Chemistry. Ribeirão Preto, SP, Brazil / Massachusetts General Hospital. Wellman Center for Photomedicine. Boston, MA, United States / Harvard Medical School. Department of Dermatology. Boston, MA, United States.University of São Paulo. School of Pharmaceutical Sciences of Ribeirão Preto. Department of Physics and Chemistry. Ribeirão Preto, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.The Ohio State University. Department of Chemistry and Biochemistry. Columbus, OH, United States.The Ohio State University. Department of Chemistry and Biochemistry. Columbus, OH, United States.University of Johannesburg. Faculty of Health Sciences. Laser Research Center. Johannesburg, South Africa.The Ohio State University. Department of Chemistry and Biochemistry. Columbus, OH, United States.University of São Paulo. Faculty of Philosophy, Sciences and Letters of Ribeirão Preto. Department of Chemistry. Ribeirão Preto, SP, Brazil / University of São Paulo. School of Pharmaceutical Sciences of Ribeirão Preto. Department of Physics and Chemistry. Ribeirão Preto, SP, Brazil / Massachusetts General Hospital, Boston. Wellman Center for Photomedicine. Boston, MA, United States / Harvard Medical School. Department of Dermatology. Boston, MA, United States.engFrontiers MediaThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological propertiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMurinae / anatomia & histologiaSarcoma de Células ClarasFotoquimioterapiaSobrevivência Celular / genéticaCompostos de Rutênio / químicaComplexos de Rutênio-FtalocianinaMelanoma / genéticainfo:eu-repo/semantics/openAccessreponame:Repositório Digital do Instituto Evandro Chagas (Patuá)instname:Instituto Evandro Chagas (IEC)instacron:IECORIGINALThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdfThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdfapplication/pdf5203567https://patua.iec.gov.br/bitstreams/27592d94-76d0-4b9b-971f-b969c6430863/download4690751bfb74ccbe558889f47ad7e7c2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82182https://patua.iec.gov.br/bitstreams/bfbbf3bd-81df-48c8-81e7-f6aa84b17366/download11832eea31b16df8613079d742d61793MD52TEXTThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdf.txtThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdf.txtExtracted texttext/plain66989https://patua.iec.gov.br/bitstreams/8ab5cbc4-f188-435b-9060-dc39844bd29f/downloadcd2b1696b7afae12bce8f71191bdf5ffMD55THUMBNAILThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdf.jpgThe influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties.pdf.jpgGenerated Thumbnailimage/jpeg5773https://patua.iec.gov.br/bitstreams/1e4f28e2-f2f6-40e5-9bf1-35fffa61cada/download05899a5e2f6abc98b036b3147f4a49e1MD56iec/42492022-10-21 00:01:12.391oai:patua.iec.gov.br:iec/4249https://patua.iec.gov.brRepositório InstitucionalPUBhttps://patua.iec.gov.br/oai/requestclariceneta@iec.gov.br || Biblioteca@iec.gov.bropendoar:2022-10-21T00:01:12Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC)falsePGI+TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmE8L2I+DQoNClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUGF0dcOhIGRldmUgY29uY2VkZXIgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIHVtYSBMaWNlbsOnYSBkZSBEaXN0cmlidWnDp8OjbyBOw6NvIEV4Y2x1c2l2YSBwYXJhIHRvcm5hciBlIG1hbnRlciBhY2Vzc8OtdmVpcyBvcyBzZXVzIGRvY3VtZW50b3MgZW0gZm9ybWF0byBkaWdpdGFsLiANCg0KQ29tIGEgY29uY2Vzc8OjbyBkZXNzYSBsaWNlbsOnYSBuw6NvIGV4Y2x1c2l2YSwgbyBkZXBvc2l0YW50ZSBjb250aW51YSBhIHJldGVyIHRvZG9zIG9zIGRpcmVpdG9zIGRlIGF1dG9yLg0KDQpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSB2b2PDqiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzKQ0KDQphKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRlIHNldSBkb2N1bWVudG8uDQoNCmIpIENvbmNlZGUgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIG8gZGlyZWl0byBuw6NvIGV4Y2x1c2l2byBkZSBhcnF1aXZhciwgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGEgc2VndWlyKSwgY29tdW5pY2FyIGUvb3UgZGlzdHJpYnVpciBubyA8Yj5QYXR1w6E8L2I+LCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIHF1YWxxdWVyIG91dHJvIG1laW8uDQoNCmMpIERlY2xhcmEgcXVlIGF1dG9yaXphIG8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIGEgYXJxdWl2YXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3NlIGRvY3VtZW50byBlIGNvbnZlcnTDqi1sbywgc2VtIGFsdGVyYXIgbyBzZXUgY29udGXDumRvLCBwYXJhIHF1YWxxdWVyIGZvcm1hdG8gZGUgZmljaGVpcm8sIG1laW8gb3Ugc3Vwb3J0ZSwgcGFyYSBlZmVpdG9zIGRlIHNlZ3VyYW7Dp2EsIHByZXNlcnZhw6fDo28gKGJhY2t1cCkgZSBhY2Vzc28uDQoNCmQpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIHN1Ym1ldGlkbyDDqSBvIHNldSB0cmFiYWxobyBvcmlnaW5hbCBlIHF1ZSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIGEgdGVyY2Vpcm9zIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuDQoNCmUpIERlY2xhcmEgcXVlLCBubyBjYXNvIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gY29udGVyIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIG9idGV2ZSBhIGF1dG9yaXphw6fDo28gaXJyZXN0cml0YSBkbyByZXNwZWN0aXZvIGRldGVudG9yIGRlc3NlcyBkaXJlaXRvcywgcGFyYSBjZWRlciBhbyBJbnN0aXR1dG8gRXZhbmRybyBDaGFnYXMgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBMaWNlbsOnYSBlIGF1dG9yaXphciBhIHV0aWxpesOhLWxvcyBsZWdhbG1lbnRlLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLg0KDQpmKSBTRSBPIERPQ1VNRU5UTyBFTlRSRUdVRSBGT1IgQkFTRUFETyBFTSBUUkFCQUxITyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIE9VVFJBIElOU1RJVFVJw4fDg08gUVVFIE7Dg08gTyBJTlNUSVRVVE8gRVZBTkRSTyBDSEFHQVMsIERFQ0xBUkEgUVVFIENVTVBSSVUgUVVBSVNRVUVSIE9CUklHQcOHw5VFUyBFWElHSURBUyBQRUxPIFJFU1BFQ1RJVk8gQ09OVFJBVE8gT1UgQUNPUkRPLg0KDQpPIEluc3RpdHV0byBFdmFuZHJvIENoYWdhcyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkbyBwcmV2aXN0byBuYSBhbMOtbmVhIGIpLg== |
dc.title.pt_BR.fl_str_mv |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
title |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
spellingShingle |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties Martins, Tássia Joi Murinae / anatomia & histologia Sarcoma de Células Claras Fotoquimioterapia Sobrevivência Celular / genética Compostos de Rutênio / química Complexos de Rutênio-Ftalocianina Melanoma / genética |
title_short |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
title_full |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
title_fullStr |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
title_full_unstemmed |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
title_sort |
The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties |
author |
Martins, Tássia Joi |
author_facet |
Martins, Tássia Joi Negri, Laisa Bonafim Pernomian, Laena Faial, Kelson do Carmo Freitas Xue, Congcong Akhimie, Regina N Hamblin, Michael R Turro, Claudia Silva, Roberto S. da |
author_role |
author |
author2 |
Negri, Laisa Bonafim Pernomian, Laena Faial, Kelson do Carmo Freitas Xue, Congcong Akhimie, Regina N Hamblin, Michael R Turro, Claudia Silva, Roberto S. da |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Martins, Tássia Joi Negri, Laisa Bonafim Pernomian, Laena Faial, Kelson do Carmo Freitas Xue, Congcong Akhimie, Regina N Hamblin, Michael R Turro, Claudia Silva, Roberto S. da |
dc.subject.decsPrimary.pt_BR.fl_str_mv |
Murinae / anatomia & histologia Sarcoma de Células Claras Fotoquimioterapia Sobrevivência Celular / genética Compostos de Rutênio / química Complexos de Rutênio-Ftalocianina Melanoma / genética |
topic |
Murinae / anatomia & histologia Sarcoma de Células Claras Fotoquimioterapia Sobrevivência Celular / genética Compostos de Rutênio / química Complexos de Rutênio-Ftalocianina Melanoma / genética |
description |
This work presents a new procedure to synthesize ruthenium–phthalocyanine complexes and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I) (Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The triplet excited-state lifetimes of (I) measured by nanosecond transient absorption showed that two processes occurred, one around 15 ns and the other around 3.8 μs. Axial ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted from secondary reactions of singlet oxygen in the presence of the ruthenium complex. We also investigate how axial ligands in the ruthenium–phthalocyanine complexes affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at 1 μmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%, showing that (I) was more active than (II) at the same concentration. Furthermore, (II) was detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium–phthalocyanine complexes point to the potential use of (I) as a metal-based drug in clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the ruthenium phthalocyanine complexes. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-02-08T16:45:06Z |
dc.date.available.fl_str_mv |
2021-02-08T16:45:06Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MARTINS, Tássia Joi et al. The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties. Frontiers in Molecular Biosciences, v. 7, p. 1-12, Jan. 2021. DOI: https://doi.org/10.3389/fmolb.2020.595830. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835839/pdf/fmolb-07-595830.pdf. |
dc.identifier.uri.fl_str_mv |
https://patua.iec.gov.br/handle/iec/4249 |
dc.identifier.issn.-.fl_str_mv |
2296-889X |
dc.identifier.doi.pt_BR.fl_str_mv |
10.3389/fmolb.2020.595830 |
identifier_str_mv |
MARTINS, Tássia Joi et al. The influence of some axial ligands on Ruthenium–Phthalocyanine complexes: chemical, photochemical, and photobiological properties. Frontiers in Molecular Biosciences, v. 7, p. 1-12, Jan. 2021. DOI: https://doi.org/10.3389/fmolb.2020.595830. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835839/pdf/fmolb-07-595830.pdf. 2296-889X 10.3389/fmolb.2020.595830 |
url |
https://patua.iec.gov.br/handle/iec/4249 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Digital do Instituto Evandro Chagas (Patuá) instname:Instituto Evandro Chagas (IEC) instacron:IEC |
instname_str |
Instituto Evandro Chagas (IEC) |
instacron_str |
IEC |
institution |
IEC |
reponame_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
collection |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
bitstream.url.fl_str_mv |
https://patua.iec.gov.br/bitstreams/27592d94-76d0-4b9b-971f-b969c6430863/download https://patua.iec.gov.br/bitstreams/bfbbf3bd-81df-48c8-81e7-f6aa84b17366/download https://patua.iec.gov.br/bitstreams/8ab5cbc4-f188-435b-9060-dc39844bd29f/download https://patua.iec.gov.br/bitstreams/1e4f28e2-f2f6-40e5-9bf1-35fffa61cada/download |
bitstream.checksum.fl_str_mv |
4690751bfb74ccbe558889f47ad7e7c2 11832eea31b16df8613079d742d61793 cd2b1696b7afae12bce8f71191bdf5ff 05899a5e2f6abc98b036b3147f4a49e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC) |
repository.mail.fl_str_mv |
clariceneta@iec.gov.br || Biblioteca@iec.gov.br |
_version_ |
1809190056024342528 |