A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Digital do Instituto Evandro Chagas (Patuá) |
Texto Completo: | https://patua.iec.gov.br/handle/iec/4455 |
Resumo: | Detecting and predicting extreme events are of major importance for socioeconomic, healthcare and ecological purposes. This study proposes an alternative model to detect extreme events based on analyses of probability distribution functionffns s (), called Optimum Probability Distribution Function Searcher Model (Opt.PDF-model). The Opt.PDF-model involves the optimization of a fitness function between an histogram and a set of theoretical , and the subsequent evaluation of the Probability Point Function (PPF) of the fittest theoretical () to assess threshold values for the classification of extreme events. Any occurrence in the dataset with a PPF value equal to or greater than 90% was considered an extreme event candidate. A satellite-derived precipitation time-series (Climate Hazards Group InfraRed Precipitation with Station data) was used to calibrate and validate the proposed model, with data on accumulated precipitation from more than 30 years (Jan.1981 to Dec.2018) of the Brazilian Amazon region. The proposed method was pairwise cross-validated with two other extreme event models based on Gamma and Gaussian distributions, as applied by the European Drought Observatory of the European Environment Agency. Aditionally, all three extreme event classification models were cross-validated relative to the El Niño Southern Oscillation (ENSO). By means of the Opt.PDF-model, it was possible to evidence two positive temporal trends for the area of study: one for more intense precipitation events, and another for less intense events. The pairwise cross-validation analysis returned specific Kappa’s similarity indices, and the highest similarity was observed between the Gamma and the Opt.PDF models (48% for PPF(97.7%)). This analysis indicated that extreme event detection models are highly sensitive to distribution family priors and to threshold definitions. The proposed approach and the results obtained here are potentially useful for climate change warnings, and can be extended to other scientific areas that involve time-series analyses. |
id |
IEC-2_afe24e2d98dae13fcb18e9310d15f984 |
---|---|
oai_identifier_str |
oai:patua.iec.gov.br:iec/4455 |
network_acronym_str |
IEC-2 |
network_name_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
repository_id_str |
|
spelling |
Leal, Philipe RiskallaGuimarães, Ricardo José de Paula Souza eCortivo, Fábio DallPalharini, Rayana Santos AraújoKampel, Milton2021-10-05T11:03:49Z2021-10-05T11:03:49Z2021LEAL, Philipe Riskalla et al. A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications. Remote Sensing Applications: Society and Environment, v. 24, n. 100618, Nov. 2021.2352-9385https://patua.iec.gov.br/handle/iec/445510.1016/j.rsase.2021.100618Detecting and predicting extreme events are of major importance for socioeconomic, healthcare and ecological purposes. This study proposes an alternative model to detect extreme events based on analyses of probability distribution functionffns s (), called Optimum Probability Distribution Function Searcher Model (Opt.PDF-model). The Opt.PDF-model involves the optimization of a fitness function between an histogram and a set of theoretical , and the subsequent evaluation of the Probability Point Function (PPF) of the fittest theoretical () to assess threshold values for the classification of extreme events. Any occurrence in the dataset with a PPF value equal to or greater than 90% was considered an extreme event candidate. A satellite-derived precipitation time-series (Climate Hazards Group InfraRed Precipitation with Station data) was used to calibrate and validate the proposed model, with data on accumulated precipitation from more than 30 years (Jan.1981 to Dec.2018) of the Brazilian Amazon region. The proposed method was pairwise cross-validated with two other extreme event models based on Gamma and Gaussian distributions, as applied by the European Drought Observatory of the European Environment Agency. Aditionally, all three extreme event classification models were cross-validated relative to the El Niño Southern Oscillation (ENSO). By means of the Opt.PDF-model, it was possible to evidence two positive temporal trends for the area of study: one for more intense precipitation events, and another for less intense events. The pairwise cross-validation analysis returned specific Kappa’s similarity indices, and the highest similarity was observed between the Gamma and the Opt.PDF models (48% for PPF(97.7%)). This analysis indicated that extreme event detection models are highly sensitive to distribution family priors and to threshold definitions. The proposed approach and the results obtained here are potentially useful for climate change warnings, and can be extended to other scientific areas that involve time-series analyses.Instituto Nacional de Pesquisas Espaciais. São Jose dos Campos, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Geoprocessamento . Ananindeua, PA, Brasil.Instituto Nacional de Pesquisas Espaciais. São Jose dos Campos, SP, Brazil.Instituto Nacional de Pesquisas Espaciais. São Jose dos Campos, SP, Brazil.Instituto Nacional de Pesquisas Espaciais. São Jose dos Campos, SP, Brazil.engElsevierA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleAlerta em Desastres / métodosSistemas de Alerta / provisão & distribuiçãoPrecipitação AtmosféricaMudança ClimáticaDesastres / prevenção & controleEstudos de Séries TemporaisTecnologia de Sensoriamento Remoto / métodosinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Digital do Instituto Evandro Chagas (Patuá)instname:Instituto Evandro Chagas (IEC)instacron:IECORIGINALA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdfA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdfapplication/pdf551083https://patua.iec.gov.br/bitstreams/5683a42d-3a55-440d-9014-17d0a89babba/downloadc9a9c128e29cac82a5d7fdf3f4e6da73MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82182https://patua.iec.gov.br/bitstreams/088b50de-30f6-4594-843a-f3c7d15eef3f/download11832eea31b16df8613079d742d61793MD52TEXTA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdf.txtA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdf.txtExtracted texttext/plain2https://patua.iec.gov.br/bitstreams/9bc5925f-8ced-437b-a528-20f48917904f/downloade1c06d85ae7b8b032bef47e42e4c08f9MD55THUMBNAILA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdf.jpgA new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications.pdf.jpgGenerated Thumbnailimage/jpeg3095https://patua.iec.gov.br/bitstreams/1ab42069-38f3-4491-b42b-c9b1d1c8a09a/download71859d578212107f7f8c49a4ce09d9eeMD56iec/44552022-10-20 22:16:47.114oai:patua.iec.gov.br:iec/4455https://patua.iec.gov.brRepositório InstitucionalPUBhttps://patua.iec.gov.br/oai/requestclariceneta@iec.gov.br || Biblioteca@iec.gov.bropendoar:2022-10-20T22:16:47Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC)falsePGI+TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmE8L2I+DQoNClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUGF0dcOhIGRldmUgY29uY2VkZXIgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIHVtYSBMaWNlbsOnYSBkZSBEaXN0cmlidWnDp8OjbyBOw6NvIEV4Y2x1c2l2YSBwYXJhIHRvcm5hciBlIG1hbnRlciBhY2Vzc8OtdmVpcyBvcyBzZXVzIGRvY3VtZW50b3MgZW0gZm9ybWF0byBkaWdpdGFsLiANCg0KQ29tIGEgY29uY2Vzc8OjbyBkZXNzYSBsaWNlbsOnYSBuw6NvIGV4Y2x1c2l2YSwgbyBkZXBvc2l0YW50ZSBjb250aW51YSBhIHJldGVyIHRvZG9zIG9zIGRpcmVpdG9zIGRlIGF1dG9yLg0KDQpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSB2b2PDqiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzKQ0KDQphKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRlIHNldSBkb2N1bWVudG8uDQoNCmIpIENvbmNlZGUgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIG8gZGlyZWl0byBuw6NvIGV4Y2x1c2l2byBkZSBhcnF1aXZhciwgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGEgc2VndWlyKSwgY29tdW5pY2FyIGUvb3UgZGlzdHJpYnVpciBubyA8Yj5QYXR1w6E8L2I+LCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIHF1YWxxdWVyIG91dHJvIG1laW8uDQoNCmMpIERlY2xhcmEgcXVlIGF1dG9yaXphIG8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIGEgYXJxdWl2YXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3NlIGRvY3VtZW50byBlIGNvbnZlcnTDqi1sbywgc2VtIGFsdGVyYXIgbyBzZXUgY29udGXDumRvLCBwYXJhIHF1YWxxdWVyIGZvcm1hdG8gZGUgZmljaGVpcm8sIG1laW8gb3Ugc3Vwb3J0ZSwgcGFyYSBlZmVpdG9zIGRlIHNlZ3VyYW7Dp2EsIHByZXNlcnZhw6fDo28gKGJhY2t1cCkgZSBhY2Vzc28uDQoNCmQpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIHN1Ym1ldGlkbyDDqSBvIHNldSB0cmFiYWxobyBvcmlnaW5hbCBlIHF1ZSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIGEgdGVyY2Vpcm9zIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuDQoNCmUpIERlY2xhcmEgcXVlLCBubyBjYXNvIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gY29udGVyIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIG9idGV2ZSBhIGF1dG9yaXphw6fDo28gaXJyZXN0cml0YSBkbyByZXNwZWN0aXZvIGRldGVudG9yIGRlc3NlcyBkaXJlaXRvcywgcGFyYSBjZWRlciBhbyBJbnN0aXR1dG8gRXZhbmRybyBDaGFnYXMgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBMaWNlbsOnYSBlIGF1dG9yaXphciBhIHV0aWxpesOhLWxvcyBsZWdhbG1lbnRlLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLg0KDQpmKSBTRSBPIERPQ1VNRU5UTyBFTlRSRUdVRSBGT1IgQkFTRUFETyBFTSBUUkFCQUxITyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIE9VVFJBIElOU1RJVFVJw4fDg08gUVVFIE7Dg08gTyBJTlNUSVRVVE8gRVZBTkRSTyBDSEFHQVMsIERFQ0xBUkEgUVVFIENVTVBSSVUgUVVBSVNRVUVSIE9CUklHQcOHw5VFUyBFWElHSURBUyBQRUxPIFJFU1BFQ1RJVk8gQ09OVFJBVE8gT1UgQUNPUkRPLg0KDQpPIEluc3RpdHV0byBFdmFuZHJvIENoYWdhcyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkbyBwcmV2aXN0byBuYSBhbMOtbmVhIGIpLg== |
dc.title.pt_BR.fl_str_mv |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
title |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
spellingShingle |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications Leal, Philipe Riskalla Alerta em Desastres / métodos Sistemas de Alerta / provisão & distribuição Precipitação Atmosférica Mudança Climática Desastres / prevenção & controle Estudos de Séries Temporais Tecnologia de Sensoriamento Remoto / métodos |
title_short |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
title_full |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
title_fullStr |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
title_full_unstemmed |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
title_sort |
A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications |
author |
Leal, Philipe Riskalla |
author_facet |
Leal, Philipe Riskalla Guimarães, Ricardo José de Paula Souza e Cortivo, Fábio Dall Palharini, Rayana Santos Araújo Kampel, Milton |
author_role |
author |
author2 |
Guimarães, Ricardo José de Paula Souza e Cortivo, Fábio Dall Palharini, Rayana Santos Araújo Kampel, Milton |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Leal, Philipe Riskalla Guimarães, Ricardo José de Paula Souza e Cortivo, Fábio Dall Palharini, Rayana Santos Araújo Kampel, Milton |
dc.subject.decsPrimary.pt_BR.fl_str_mv |
Alerta em Desastres / métodos Sistemas de Alerta / provisão & distribuição Precipitação Atmosférica Mudança Climática Desastres / prevenção & controle Estudos de Séries Temporais Tecnologia de Sensoriamento Remoto / métodos |
topic |
Alerta em Desastres / métodos Sistemas de Alerta / provisão & distribuição Precipitação Atmosférica Mudança Climática Desastres / prevenção & controle Estudos de Séries Temporais Tecnologia de Sensoriamento Remoto / métodos |
description |
Detecting and predicting extreme events are of major importance for socioeconomic, healthcare and ecological purposes. This study proposes an alternative model to detect extreme events based on analyses of probability distribution functionffns s (), called Optimum Probability Distribution Function Searcher Model (Opt.PDF-model). The Opt.PDF-model involves the optimization of a fitness function between an histogram and a set of theoretical , and the subsequent evaluation of the Probability Point Function (PPF) of the fittest theoretical () to assess threshold values for the classification of extreme events. Any occurrence in the dataset with a PPF value equal to or greater than 90% was considered an extreme event candidate. A satellite-derived precipitation time-series (Climate Hazards Group InfraRed Precipitation with Station data) was used to calibrate and validate the proposed model, with data on accumulated precipitation from more than 30 years (Jan.1981 to Dec.2018) of the Brazilian Amazon region. The proposed method was pairwise cross-validated with two other extreme event models based on Gamma and Gaussian distributions, as applied by the European Drought Observatory of the European Environment Agency. Aditionally, all three extreme event classification models were cross-validated relative to the El Niño Southern Oscillation (ENSO). By means of the Opt.PDF-model, it was possible to evidence two positive temporal trends for the area of study: one for more intense precipitation events, and another for less intense events. The pairwise cross-validation analysis returned specific Kappa’s similarity indices, and the highest similarity was observed between the Gamma and the Opt.PDF models (48% for PPF(97.7%)). This analysis indicated that extreme event detection models are highly sensitive to distribution family priors and to threshold definitions. The proposed approach and the results obtained here are potentially useful for climate change warnings, and can be extended to other scientific areas that involve time-series analyses. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-10-05T11:03:49Z |
dc.date.available.fl_str_mv |
2021-10-05T11:03:49Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LEAL, Philipe Riskalla et al. A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications. Remote Sensing Applications: Society and Environment, v. 24, n. 100618, Nov. 2021. |
dc.identifier.uri.fl_str_mv |
https://patua.iec.gov.br/handle/iec/4455 |
dc.identifier.issn.-.fl_str_mv |
2352-9385 |
dc.identifier.doi.-.fl_str_mv |
10.1016/j.rsase.2021.100618 |
identifier_str_mv |
LEAL, Philipe Riskalla et al. A new approach to detect extreme events: a case study using remotely-sensed precipitation time-series data remote sensing applications. Remote Sensing Applications: Society and Environment, v. 24, n. 100618, Nov. 2021. 2352-9385 10.1016/j.rsase.2021.100618 |
url |
https://patua.iec.gov.br/handle/iec/4455 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Digital do Instituto Evandro Chagas (Patuá) instname:Instituto Evandro Chagas (IEC) instacron:IEC |
instname_str |
Instituto Evandro Chagas (IEC) |
instacron_str |
IEC |
institution |
IEC |
reponame_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
collection |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
bitstream.url.fl_str_mv |
https://patua.iec.gov.br/bitstreams/5683a42d-3a55-440d-9014-17d0a89babba/download https://patua.iec.gov.br/bitstreams/088b50de-30f6-4594-843a-f3c7d15eef3f/download https://patua.iec.gov.br/bitstreams/9bc5925f-8ced-437b-a528-20f48917904f/download https://patua.iec.gov.br/bitstreams/1ab42069-38f3-4491-b42b-c9b1d1c8a09a/download |
bitstream.checksum.fl_str_mv |
c9a9c128e29cac82a5d7fdf3f4e6da73 11832eea31b16df8613079d742d61793 e1c06d85ae7b8b032bef47e42e4c08f9 71859d578212107f7f8c49a4ce09d9ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC) |
repository.mail.fl_str_mv |
clariceneta@iec.gov.br || Biblioteca@iec.gov.br |
_version_ |
1809190046472863744 |