Time evolution simulation of heat removal in a small water tank by natural convection

Detalhes bibliográficos
Autor(a) principal: Jachic, João
Data de Publicação: 2013
Outros Autores: Instituto de Engenharia Nuclear
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional do IEN
Texto Completo: http://carpedien.ien.gov.br:8080/handle/ien/2377
Resumo: One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled.
id IEN_54622fb65710f11409f0d829dd8fc15d
oai_identifier_str oai:carpedien.ien.gov.br:ien/2377
network_acronym_str IEN
network_name_str Repositório Institucional do IEN
spelling Jachic, JoãoInstituto de Engenharia Nuclear2018-06-07T12:40:41Z2018-06-07T12:40:41Z2013-11http://carpedien.ien.gov.br:8080/handle/ien/2377Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2018-06-07T12:40:40Z No. of bitstreams: 1 TIME EVOLUTION SIMULATION OF HEAT REMOVAL IN A SMALL WATER TANK BY NATURAL CONVECTION.pdf: 467724 bytes, checksum: dff4f95f41f6004073c1957d9f17b60d (MD5)Made available in DSpace on 2018-06-07T12:40:41Z (GMT). No. of bitstreams: 1 TIME EVOLUTION SIMULATION OF HEAT REMOVAL IN A SMALL WATER TANK BY NATURAL CONVECTION.pdf: 467724 bytes, checksum: dff4f95f41f6004073c1957d9f17b60d (MD5) Previous issue date: 2013-11One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled.engInstituto de Engenharia NuclearIENBrasilINAC 2013Natural convectionNuclear simulationTime evolution simulation of heat removal in a small water tank by natural convectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectVI INACinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IENinstname:Instituto de Engenharia Nuclearinstacron:IENLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2377/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALTIME EVOLUTION SIMULATION OF HEAT REMOVAL IN A SMALL WATER TANK BY NATURAL CONVECTION.pdfTIME EVOLUTION SIMULATION OF HEAT REMOVAL IN A SMALL WATER TANK BY NATURAL CONVECTION.pdfapplication/pdf467724http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2377/1/TIME+EVOLUTION+SIMULATION+OF+HEAT+REMOVAL+IN+A+SMALL+WATER+TANK+BY+NATURAL+CONVECTION.pdfdff4f95f41f6004073c1957d9f17b60dMD51ien/2377oai:carpedien.ien.gov.br:ien/23772018-06-07 09:40:41.325Dspace IENlsales@ien.gov.brTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Time evolution simulation of heat removal in a small water tank by natural convection
title Time evolution simulation of heat removal in a small water tank by natural convection
spellingShingle Time evolution simulation of heat removal in a small water tank by natural convection
Jachic, João
INAC 2013
Natural convection
Nuclear simulation
title_short Time evolution simulation of heat removal in a small water tank by natural convection
title_full Time evolution simulation of heat removal in a small water tank by natural convection
title_fullStr Time evolution simulation of heat removal in a small water tank by natural convection
title_full_unstemmed Time evolution simulation of heat removal in a small water tank by natural convection
title_sort Time evolution simulation of heat removal in a small water tank by natural convection
author Jachic, João
author_facet Jachic, João
Instituto de Engenharia Nuclear
author_role author
author2 Instituto de Engenharia Nuclear
author2_role author
dc.contributor.author.fl_str_mv Jachic, João
Instituto de Engenharia Nuclear
dc.subject.por.fl_str_mv INAC 2013
Natural convection
Nuclear simulation
topic INAC 2013
Natural convection
Nuclear simulation
dc.description.abstract.por.fl_txt_mv One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled.
description One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled.
publishDate 2013
dc.date.issued.fl_str_mv 2013-11
dc.date.accessioned.fl_str_mv 2018-06-07T12:40:41Z
dc.date.available.fl_str_mv 2018-06-07T12:40:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
status_str publishedVersion
format conferenceObject
dc.identifier.uri.fl_str_mv http://carpedien.ien.gov.br:8080/handle/ien/2377
url http://carpedien.ien.gov.br:8080/handle/ien/2377
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.publisher.initials.fl_str_mv IEN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IEN
instname:Instituto de Engenharia Nuclear
instacron:IEN
reponame_str Repositório Institucional do IEN
collection Repositório Institucional do IEN
instname_str Instituto de Engenharia Nuclear
instacron_str IEN
institution IEN
bitstream.url.fl_str_mv http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2377/2/license.txt
http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2377/1/TIME+EVOLUTION+SIMULATION+OF+HEAT+REMOVAL+IN+A+SMALL+WATER+TANK+BY+NATURAL+CONVECTION.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
dff4f95f41f6004073c1957d9f17b60d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace IEN
repository.mail.fl_str_mv lsales@ien.gov.br
_version_ 1656026993728159744