Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets

Detalhes bibliográficos
Autor(a) principal: Bittencourt, Marcelo de Siqueira Queiroz
Data de Publicação: 2015
Outros Autores: Instituto de Engenharia Nuclear
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional do IEN
Texto Completo: http://carpedien.ien.gov.br:8080/handle/ien/2361
Resumo: Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application.
id IEN_b56c220015d577474d27a539f4924d2d
oai_identifier_str oai:carpedien.ien.gov.br:ien/2361
network_acronym_str IEN
network_name_str Repositório Institucional do IEN
spelling Bittencourt, Marcelo de Siqueira QueirozInstituto de Engenharia Nuclear2018-05-23T13:39:59Z2018-05-23T13:39:59Z2015-10http://carpedien.ien.gov.br:8080/handle/ien/2361Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2018-05-23T13:39:59Z No. of bitstreams: 1 Proposal for Ultrasonic Technique for Evaluation Elastic Constants in UO2 pellets.pdf: 795858 bytes, checksum: aa5b917859258384cb20a7899a192189 (MD5)Made available in DSpace on 2018-05-23T13:39:59Z (GMT). No. of bitstreams: 1 Proposal for Ultrasonic Technique for Evaluation Elastic Constants in UO2 pellets.pdf: 795858 bytes, checksum: aa5b917859258384cb20a7899a192189 (MD5) Previous issue date: 2015-10Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application.engInstituto de Engenharia NuclearIENBrasilINAC 2015Ultrassonic techiniqueNuclear power reactorsUranium dioxideProposal for ultrasonic technique for evaluation elastic constants in uo2 pelletsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectXII ENANinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IENinstname:Instituto de Engenharia Nuclearinstacron:IENLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2361/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALProposal for Ultrasonic Technique for Evaluation Elastic Constants in UO2 pellets.pdfProposal for Ultrasonic Technique for Evaluation Elastic Constants in UO2 pellets.pdfapplication/pdf795858http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2361/1/Proposal+for+Ultrasonic+Technique+for+Evaluation+Elastic+Constants+in+UO2+pellets.pdfaa5b917859258384cb20a7899a192189MD51ien/2361oai:carpedien.ien.gov.br:ien/23612018-05-23 10:39:59.136Dspace IENlsales@ien.gov.brTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
title Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
spellingShingle Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
Bittencourt, Marcelo de Siqueira Queiroz
INAC 2015
Ultrassonic techinique
Nuclear power reactors
Uranium dioxide
title_short Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
title_full Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
title_fullStr Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
title_full_unstemmed Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
title_sort Proposal for ultrasonic technique for evaluation elastic constants in uo2 pellets
author Bittencourt, Marcelo de Siqueira Queiroz
author_facet Bittencourt, Marcelo de Siqueira Queiroz
Instituto de Engenharia Nuclear
author_role author
author2 Instituto de Engenharia Nuclear
author2_role author
dc.contributor.author.fl_str_mv Bittencourt, Marcelo de Siqueira Queiroz
Instituto de Engenharia Nuclear
dc.subject.por.fl_str_mv INAC 2015
Ultrassonic techinique
Nuclear power reactors
Uranium dioxide
topic INAC 2015
Ultrassonic techinique
Nuclear power reactors
Uranium dioxide
dc.description.abstract.por.fl_txt_mv Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application.
description Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application.
publishDate 2015
dc.date.issued.fl_str_mv 2015-10
dc.date.accessioned.fl_str_mv 2018-05-23T13:39:59Z
dc.date.available.fl_str_mv 2018-05-23T13:39:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
status_str publishedVersion
format conferenceObject
dc.identifier.uri.fl_str_mv http://carpedien.ien.gov.br:8080/handle/ien/2361
url http://carpedien.ien.gov.br:8080/handle/ien/2361
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.publisher.initials.fl_str_mv IEN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IEN
instname:Instituto de Engenharia Nuclear
instacron:IEN
reponame_str Repositório Institucional do IEN
collection Repositório Institucional do IEN
instname_str Instituto de Engenharia Nuclear
instacron_str IEN
institution IEN
bitstream.url.fl_str_mv http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2361/2/license.txt
http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2361/1/Proposal+for+Ultrasonic+Technique+for+Evaluation+Elastic+Constants+in+UO2+pellets.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
aa5b917859258384cb20a7899a192189
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace IEN
repository.mail.fl_str_mv lsales@ien.gov.br
_version_ 1656026992957456384