Optimal fuel depletion strategy

Detalhes bibliográficos
Autor(a) principal: Jachic, João
Data de Publicação: 1981
Outros Autores: Instituto de Engenharia Nuclear
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional do IEN
Texto Completo: http://carpedien.ien.gov.br:8080/handle/ien/1951
Resumo: This thesis describes the development of a fuel depletion strategy that maximizes cycle length in boiling water reactor (BWR) cores. The cycle length maximization problem was formulated in terms of a core reactivity maximization scheme which provided solution to a terminal state optimization problem as well as to the optimal depletion strategy search. The nonlinear optimization problem was solved through an iterative application of linear programming involving linearization of the objective function and constraint equations. The nuclear-thermal-hydraulic model representing BWR cores was solved in a fully coupled, nonlinear form outside of the linear programming algorithm. For our numerical study, a large BWR core was modeled through a finite-difference form of the axial one-dimensional, two group neutron diffusion equation with control rods and thermal-hydraulic feedback represented. The optimal terminal state that results in maximum cycle length at the end-of-cycle for a given fuel loading is obtained through two phases, involving burnup shape optimization and cycle length extension, respectively. The optimal fuel depletion strategy is obtained through optimization of control rod pattern such that the loss in core reactivity over each depletion interval is minimized subject to power distribution constraints. The maximum cycle length obtained in our one dimensional axial depletion calculation indicates an increase of 7.4% over the corresponding Haling result, suggesting potential improvement in fuel utilization through proper control poison management. We also conclude that both the optimal terminal state and the optimal depletion strategy strongly depend upon the power distribution constraints. The fuel cycle is extended at the expense of power peaking margin. The optimal terminal state results in a bimodal bottom-peaked burnup shape and a top-peaked power distribution with the power peaking factor at the design limit. The optimal depletion calculation shows that the optimal power distribution is bimodal and time dependent with, the peaking factor at the design limit. The optimal power distribution is more skewed than the traditional Haling shape and bottom-peaked for most of the fuel cycle. For a short time interval around a coreaverage burnup of 3 GWD/T the power distribution is toppeaked reflecting the high depletion rate of the distributed burnable poison.
id IEN_e179038e405e6f2b6ab3c3d1bffc4ea2
oai_identifier_str oai:carpedien.ien.gov.br:ien/1951
network_acronym_str IEN
network_name_str Repositório Institucional do IEN
spelling Jachic, JoãoInstituto de Engenharia NuclearLee, John C.Duderstadt, James J.Knoll, Glenn F.Martin, William R.Yang, Wei H.Lee, John C.2017-10-02T18:24:17Z2017-10-02T18:24:17Z1981http://carpedien.ien.gov.br:8080/handle/ien/1951Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2017-10-02T18:24:17Z No. of bitstreams: 1 JOÃO JACHIC D.pdf: 4694106 bytes, checksum: f610bf160c523083f77b7b3b8e752662 (MD5)Made available in DSpace on 2017-10-02T18:24:17Z (GMT). No. of bitstreams: 1 JOÃO JACHIC D.pdf: 4694106 bytes, checksum: f610bf160c523083f77b7b3b8e752662 (MD5) Previous issue date: 1981This thesis describes the development of a fuel depletion strategy that maximizes cycle length in boiling water reactor (BWR) cores. The cycle length maximization problem was formulated in terms of a core reactivity maximization scheme which provided solution to a terminal state optimization problem as well as to the optimal depletion strategy search. The nonlinear optimization problem was solved through an iterative application of linear programming involving linearization of the objective function and constraint equations. The nuclear-thermal-hydraulic model representing BWR cores was solved in a fully coupled, nonlinear form outside of the linear programming algorithm. For our numerical study, a large BWR core was modeled through a finite-difference form of the axial one-dimensional, two group neutron diffusion equation with control rods and thermal-hydraulic feedback represented. The optimal terminal state that results in maximum cycle length at the end-of-cycle for a given fuel loading is obtained through two phases, involving burnup shape optimization and cycle length extension, respectively. The optimal fuel depletion strategy is obtained through optimization of control rod pattern such that the loss in core reactivity over each depletion interval is minimized subject to power distribution constraints. The maximum cycle length obtained in our one dimensional axial depletion calculation indicates an increase of 7.4% over the corresponding Haling result, suggesting potential improvement in fuel utilization through proper control poison management. We also conclude that both the optimal terminal state and the optimal depletion strategy strongly depend upon the power distribution constraints. The fuel cycle is extended at the expense of power peaking margin. The optimal terminal state results in a bimodal bottom-peaked burnup shape and a top-peaked power distribution with the power peaking factor at the design limit. The optimal depletion calculation shows that the optimal power distribution is bimodal and time dependent with, the peaking factor at the design limit. The optimal power distribution is more skewed than the traditional Haling shape and bottom-peaked for most of the fuel cycle. For a short time interval around a coreaverage burnup of 3 GWD/T the power distribution is toppeaked reflecting the high depletion rate of the distributed burnable poison.engInstituto de Engenharia NuclearPrograma de Pós-Graduação em Engenharia NuclearIENEstados unidosUniversity of MichiganOptmal fuelOptimal fuel depletion strategyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IENinstname:Instituto de Engenharia Nuclearinstacron:IENLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/1951/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALJOÃO JACHIC D.pdfJOÃO JACHIC D.pdfapplication/pdf4694106http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/1951/1/JO%C3%83O+JACHIC+D.pdff610bf160c523083f77b7b3b8e752662MD51ien/1951oai:carpedien.ien.gov.br:ien/19512017-10-02 15:24:17.426Dspace IENlsales@ien.gov.brTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Optimal fuel depletion strategy
title Optimal fuel depletion strategy
spellingShingle Optimal fuel depletion strategy
Jachic, João
Optmal fuel
title_short Optimal fuel depletion strategy
title_full Optimal fuel depletion strategy
title_fullStr Optimal fuel depletion strategy
title_full_unstemmed Optimal fuel depletion strategy
title_sort Optimal fuel depletion strategy
author Jachic, João
author_facet Jachic, João
Instituto de Engenharia Nuclear
author_role author
author2 Instituto de Engenharia Nuclear
author2_role author
dc.contributor.referees1.none.fl_str_mv Lee, John C.
dc.contributor.referees2.none.fl_str_mv Duderstadt, James J.
dc.contributor.referees3.none.fl_str_mv Knoll, Glenn F.
dc.contributor.referees4.none.fl_str_mv Martin, William R.
dc.contributor.referees5.none.fl_str_mv Yang, Wei H.
dc.contributor.author.fl_str_mv Jachic, João
Instituto de Engenharia Nuclear
dc.contributor.advisor1.fl_str_mv Lee, John C.
contributor_str_mv Lee, John C.
dc.subject.por.fl_str_mv Optmal fuel
topic Optmal fuel
dc.description.abstract.por.fl_txt_mv This thesis describes the development of a fuel depletion strategy that maximizes cycle length in boiling water reactor (BWR) cores. The cycle length maximization problem was formulated in terms of a core reactivity maximization scheme which provided solution to a terminal state optimization problem as well as to the optimal depletion strategy search. The nonlinear optimization problem was solved through an iterative application of linear programming involving linearization of the objective function and constraint equations. The nuclear-thermal-hydraulic model representing BWR cores was solved in a fully coupled, nonlinear form outside of the linear programming algorithm. For our numerical study, a large BWR core was modeled through a finite-difference form of the axial one-dimensional, two group neutron diffusion equation with control rods and thermal-hydraulic feedback represented. The optimal terminal state that results in maximum cycle length at the end-of-cycle for a given fuel loading is obtained through two phases, involving burnup shape optimization and cycle length extension, respectively. The optimal fuel depletion strategy is obtained through optimization of control rod pattern such that the loss in core reactivity over each depletion interval is minimized subject to power distribution constraints. The maximum cycle length obtained in our one dimensional axial depletion calculation indicates an increase of 7.4% over the corresponding Haling result, suggesting potential improvement in fuel utilization through proper control poison management. We also conclude that both the optimal terminal state and the optimal depletion strategy strongly depend upon the power distribution constraints. The fuel cycle is extended at the expense of power peaking margin. The optimal terminal state results in a bimodal bottom-peaked burnup shape and a top-peaked power distribution with the power peaking factor at the design limit. The optimal depletion calculation shows that the optimal power distribution is bimodal and time dependent with, the peaking factor at the design limit. The optimal power distribution is more skewed than the traditional Haling shape and bottom-peaked for most of the fuel cycle. For a short time interval around a coreaverage burnup of 3 GWD/T the power distribution is toppeaked reflecting the high depletion rate of the distributed burnable poison.
description This thesis describes the development of a fuel depletion strategy that maximizes cycle length in boiling water reactor (BWR) cores. The cycle length maximization problem was formulated in terms of a core reactivity maximization scheme which provided solution to a terminal state optimization problem as well as to the optimal depletion strategy search. The nonlinear optimization problem was solved through an iterative application of linear programming involving linearization of the objective function and constraint equations. The nuclear-thermal-hydraulic model representing BWR cores was solved in a fully coupled, nonlinear form outside of the linear programming algorithm. For our numerical study, a large BWR core was modeled through a finite-difference form of the axial one-dimensional, two group neutron diffusion equation with control rods and thermal-hydraulic feedback represented. The optimal terminal state that results in maximum cycle length at the end-of-cycle for a given fuel loading is obtained through two phases, involving burnup shape optimization and cycle length extension, respectively. The optimal fuel depletion strategy is obtained through optimization of control rod pattern such that the loss in core reactivity over each depletion interval is minimized subject to power distribution constraints. The maximum cycle length obtained in our one dimensional axial depletion calculation indicates an increase of 7.4% over the corresponding Haling result, suggesting potential improvement in fuel utilization through proper control poison management. We also conclude that both the optimal terminal state and the optimal depletion strategy strongly depend upon the power distribution constraints. The fuel cycle is extended at the expense of power peaking margin. The optimal terminal state results in a bimodal bottom-peaked burnup shape and a top-peaked power distribution with the power peaking factor at the design limit. The optimal depletion calculation shows that the optimal power distribution is bimodal and time dependent with, the peaking factor at the design limit. The optimal power distribution is more skewed than the traditional Haling shape and bottom-peaked for most of the fuel cycle. For a short time interval around a coreaverage burnup of 3 GWD/T the power distribution is toppeaked reflecting the high depletion rate of the distributed burnable poison.
publishDate 1981
dc.date.issued.fl_str_mv 1981
dc.date.accessioned.fl_str_mv 2017-10-02T18:24:17Z
dc.date.available.fl_str_mv 2017-10-02T18:24:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://carpedien.ien.gov.br:8080/handle/ien/1951
url http://carpedien.ien.gov.br:8080/handle/ien/1951
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Nuclear
dc.publisher.initials.fl_str_mv IEN
dc.publisher.country.fl_str_mv Estados unidos
dc.publisher.department.fl_str_mv University of Michigan
publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IEN
instname:Instituto de Engenharia Nuclear
instacron:IEN
reponame_str Repositório Institucional do IEN
collection Repositório Institucional do IEN
instname_str Instituto de Engenharia Nuclear
instacron_str IEN
institution IEN
bitstream.url.fl_str_mv http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/1951/2/license.txt
http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/1951/1/JO%C3%83O+JACHIC+D.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
f610bf160c523083f77b7b3b8e752662
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace IEN
repository.mail.fl_str_mv lsales@ien.gov.br
_version_ 1656026988118278144