Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry

Detalhes bibliográficos
Autor(a) principal: Jesus, Camila
Data de Publicação: 2013
Outros Autores: Taam, Isabel, Vianna, Cláudio, Instituto de Engenharia Nuclear
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional do IEN
Texto Completo: http://carpedien.ien.gov.br:8080/handle/ien/2383
Resumo: The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficience of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation.
id IEN_f8399ee671d498ee66204b1eeeba1585
oai_identifier_str oai:carpedien.ien.gov.br:ien/2383
network_acronym_str IEN
network_name_str Repositório Institucional do IEN
spelling Jesus, CamilaTaam, IsabelVianna, CláudioInstituto de Engenharia Nuclear2018-06-07T13:52:27Z2018-06-07T13:52:27Z2013-11http://carpedien.ien.gov.br:8080/handle/ien/2383Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2018-06-07T13:52:27Z No. of bitstreams: 1 quantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdf: 150510 bytes, checksum: 7367e3c71f71a8ef4d68057f83b0b875 (MD5)Made available in DSpace on 2018-06-07T13:52:27Z (GMT). No. of bitstreams: 1 quantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdf: 150510 bytes, checksum: 7367e3c71f71a8ef4d68057f83b0b875 (MD5) Previous issue date: 2013-11The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficience of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation.engInstituto de Engenharia NuclearIENBrasilINAC 2013Analytic ChemistryX-rayThoriumSpectrometryRare-EarthsQuantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectVI INACinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IENinstname:Instituto de Engenharia Nuclearinstacron:IENLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2383/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALquantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdfquantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdfapplication/pdf150510http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2383/1/quantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdf7367e3c71f71a8ef4d68057f83b0b875MD51ien/2383oai:carpedien.ien.gov.br:ien/23832018-06-07 10:52:27.991Dspace IENlsales@ien.gov.brTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
title Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
spellingShingle Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
Jesus, Camila
INAC 2013
Analytic Chemistry
X-ray
Thorium
Spectrometry
Rare-Earths
title_short Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
title_full Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
title_fullStr Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
title_full_unstemmed Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
title_sort Quantitative analysis of thorium in the presence of rare earth by x-ray fluorescence spectrometry
author Jesus, Camila
author_facet Jesus, Camila
Taam, Isabel
Vianna, Cláudio
Instituto de Engenharia Nuclear
author_role author
author2 Taam, Isabel
Vianna, Cláudio
Instituto de Engenharia Nuclear
author2_role author
author
author
dc.contributor.author.fl_str_mv Jesus, Camila
Taam, Isabel
Vianna, Cláudio
Instituto de Engenharia Nuclear
dc.subject.por.fl_str_mv INAC 2013
Analytic Chemistry
X-ray
Thorium
Spectrometry
Rare-Earths
topic INAC 2013
Analytic Chemistry
X-ray
Thorium
Spectrometry
Rare-Earths
dc.description.abstract.por.fl_txt_mv The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficience of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation.
description The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficience of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation.
publishDate 2013
dc.date.issued.fl_str_mv 2013-11
dc.date.accessioned.fl_str_mv 2018-06-07T13:52:27Z
dc.date.available.fl_str_mv 2018-06-07T13:52:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
status_str publishedVersion
format conferenceObject
dc.identifier.uri.fl_str_mv http://carpedien.ien.gov.br:8080/handle/ien/2383
url http://carpedien.ien.gov.br:8080/handle/ien/2383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.publisher.initials.fl_str_mv IEN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IEN
instname:Instituto de Engenharia Nuclear
instacron:IEN
reponame_str Repositório Institucional do IEN
collection Repositório Institucional do IEN
instname_str Instituto de Engenharia Nuclear
instacron_str IEN
institution IEN
bitstream.url.fl_str_mv http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2383/2/license.txt
http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2383/1/quantitative-analysis-of-thorium-in-the-presence-of-rare-earth-by-x-ray-fluorescence-spectrometry.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
7367e3c71f71a8ef4d68057f83b0b875
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace IEN
repository.mail.fl_str_mv lsales@ien.gov.br
_version_ 1656026993757519872