VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS

Detalhes bibliográficos
Autor(a) principal: de Paulo, Ellisson Henrique
Data de Publicação: 2024
Outros Autores: dos Santos, Francine Dalapícola, Folli , Gabriely Silveira, Nascimento, Márcia Helena Cassago, Moro, Mariana Kuster, Cunha, Pedro Henrique Pereira da, Silva , Samantha Ribeiro Campos da, Castro , Eustáquio Vinícius Ribeiro de, Cunha Neto , Alvaro, Filgueiras, Paulo Roberto, Ferrão, Marco Flôres, Ellisson, Marco
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Eletrônica Debates em Educação Científica e Tecnológica
Texto Completo: https://ojs.ifes.edu.br/index.php/ric/article/view/2516
Resumo: High-temperature gas chromatography (HTGC) is an analytical technique employed in the petroleum industry for component separation. By incorporating chemometrics, HTGC data can be effectively utilized to predict various properties of crude oil. However, HTGC chromatograms generate a substantial number of variables, some of which may lack pertinent chemical information. Consequently, employing variable selection methods becomes crucial to reduce the number of variables and enhance the predictive capability of calibration models. In this study, the interval partial least squares (iPLS), synergy interval partial least squares (siPLS), and ordered predictors selection (OPS) methods were applied for variable selection to construct linear regression models. The main objective was to investigate the potential of these methods in predicting eight properties of crude oil: American Petroleum Institute (API) gravity, standardized kinematic viscosity at 50 °C (VISp), flash point (FP), Reid vapor pressure (RVP), micro carbon residue (MCR), saturates (SAT), aromatics (ARO), and polar (POL) content.  While all variable selection methods yielded satisfactory results, the OPS-PLS regression models consistently exhibited the best performance in estimating these properties, achieving root mean squared error of prediction (RMSEP) values of 1.244 for API, 0.029 for VISp, 15.356 °C for FP, 0.324 kPa for RVP, 0.629 wt% for MCR, 3.691 wt% for SAT, 2.939 wt% for ARO, and 3.374 wt% for POL. Variable selection demonstrated remarkable effectiveness, significantly improving the accuracy of the models, and allowing for the creation of concise models with a focused set of variables.
id IFES-1_3bf274271d2c5bb9d0613af7250715e8
oai_identifier_str oai::article/2516
network_acronym_str IFES-1
network_name_str Revista Eletrônica Debates em Educação Científica e Tecnológica
repository_id_str
spelling VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILSVARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILSVariables selectioncrude oilHTGCPLSOPSVariables selectioncrude oilHTGCbiodiesel, smartphone, photometrix, imagem, PLSOPSHigh-temperature gas chromatography (HTGC) is an analytical technique employed in the petroleum industry for component separation. By incorporating chemometrics, HTGC data can be effectively utilized to predict various properties of crude oil. However, HTGC chromatograms generate a substantial number of variables, some of which may lack pertinent chemical information. Consequently, employing variable selection methods becomes crucial to reduce the number of variables and enhance the predictive capability of calibration models. In this study, the interval partial least squares (iPLS), synergy interval partial least squares (siPLS), and ordered predictors selection (OPS) methods were applied for variable selection to construct linear regression models. The main objective was to investigate the potential of these methods in predicting eight properties of crude oil: American Petroleum Institute (API) gravity, standardized kinematic viscosity at 50 °C (VISp), flash point (FP), Reid vapor pressure (RVP), micro carbon residue (MCR), saturates (SAT), aromatics (ARO), and polar (POL) content.  While all variable selection methods yielded satisfactory results, the OPS-PLS regression models consistently exhibited the best performance in estimating these properties, achieving root mean squared error of prediction (RMSEP) values of 1.244 for API, 0.029 for VISp, 15.356 °C for FP, 0.324 kPa for RVP, 0.629 wt% for MCR, 3.691 wt% for SAT, 2.939 wt% for ARO, and 3.374 wt% for POL. Variable selection demonstrated remarkable effectiveness, significantly improving the accuracy of the models, and allowing for the creation of concise models with a focused set of variables.High-temperature gas chromatography (HTGC) is an analytical technique employed in the petroleum industry for component separation. By incorporating chemometrics, HTGC data can be effectively utilized to predict various properties of crude oil. However, HTGC chromatograms generate a substantial number of variables, some of which may lack pertinent chemical information. Consequently, employing variable selection methods becomes crucial to reduce the number of variables and enhance the predictive capability of calibration models. In this study, the interval partial least squares (iPLS), synergy interval partial least squares (siPLS), and ordered predictors selection (OPS) methods were applied for variable selection to construct linear regression models. The main objective was to investigate the potential of these methods in predicting eight properties of crude oil: American Petroleum Institute (API) gravity, standardized kinematic viscosity at 50 °C (VISp), flash point (FP), Reid vapor pressure (RVP), micro carbon residue (MCR), saturates (SAT), aromatics (ARO), and polar (POL) content.  While all variable selection methods yielded satisfactory results, the OPS-PLS regression models consistently exhibited the best performance in estimating these properties, achieving root mean squared error of prediction (RMSEP) values of 1.244 for API, 0.029 for VISp, 15.356 °C for FP, 0.324 kPa for RVP, 0.629 wt% for MCR, 3.691 wt% for SAT, 2.939 wt% for ARO, and 3.374 wt% for POL. Variable selection demonstrated remarkable effectiveness, significantly improving the accuracy of the models, and allowing for the creation of concise models with a focused set of variables.Instituto Federal do Espírito Santo2024-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.ifes.edu.br/index.php/ric/article/view/251610.36524/ric.v10i1.2516Revista Ifes Ciência ; v. 10 n. 1 (2024): Revista Ifes Ciência; 01-272359-479910.36524/ric.v10i1reponame:Revista Eletrônica Debates em Educação Científica e Tecnológicainstname:Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES)instacron:IFESporhttps://ojs.ifes.edu.br/index.php/ric/article/view/2516/1131Copyright (c) 2024 Revista Ifes Ciência https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessde Paulo, Ellisson Henriquedos Santos, Francine DalapícolaFolli , Gabriely SilveiraNascimento, Márcia Helena CassagoMoro, Mariana KusterCunha, Pedro Henrique Pereira daSilva , Samantha Ribeiro Campos da Castro , Eustáquio Vinícius Ribeiro de Cunha Neto , AlvaroFilgueiras, Paulo RobertoFerrão, Marco FlôresEllissonMarco2024-03-25T14:15:01Zoai::article/2516Revistahttps://ojs.ifes.edu.br/index.php/indexPUBhttps://ojs.ifes.edu.br/index.php/index/oairevistadect@gmail.com||sidneiquezada@gmail.com2236-21502179-6955opendoar:2024-03-25T14:15:01Revista Eletrônica Debates em Educação Científica e Tecnológica - Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES)false
dc.title.none.fl_str_mv VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
title VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
spellingShingle VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
de Paulo, Ellisson Henrique
Variables selection
crude oil
HTGC
PLS
OPS
Variables selection
crude oil
HTGC
biodiesel, smartphone, photometrix, imagem, PLS
OPS
title_short VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
title_full VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
title_fullStr VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
title_full_unstemmed VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
title_sort VARIABLE SELECTION METHODS APPLIED IN HTGC DATA TO DETERMINE PHYSICOCHEMICAL PROPERTIES OF CRUDE OILS
author de Paulo, Ellisson Henrique
author_facet de Paulo, Ellisson Henrique
dos Santos, Francine Dalapícola
Folli , Gabriely Silveira
Nascimento, Márcia Helena Cassago
Moro, Mariana Kuster
Cunha, Pedro Henrique Pereira da
Silva , Samantha Ribeiro Campos da
Castro , Eustáquio Vinícius Ribeiro de
Cunha Neto , Alvaro
Filgueiras, Paulo Roberto
Ferrão, Marco Flôres
Ellisson
Marco
author_role author
author2 dos Santos, Francine Dalapícola
Folli , Gabriely Silveira
Nascimento, Márcia Helena Cassago
Moro, Mariana Kuster
Cunha, Pedro Henrique Pereira da
Silva , Samantha Ribeiro Campos da
Castro , Eustáquio Vinícius Ribeiro de
Cunha Neto , Alvaro
Filgueiras, Paulo Roberto
Ferrão, Marco Flôres
Ellisson
Marco
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv de Paulo, Ellisson Henrique
dos Santos, Francine Dalapícola
Folli , Gabriely Silveira
Nascimento, Márcia Helena Cassago
Moro, Mariana Kuster
Cunha, Pedro Henrique Pereira da
Silva , Samantha Ribeiro Campos da
Castro , Eustáquio Vinícius Ribeiro de
Cunha Neto , Alvaro
Filgueiras, Paulo Roberto
Ferrão, Marco Flôres
Ellisson
Marco
dc.subject.por.fl_str_mv Variables selection
crude oil
HTGC
PLS
OPS
Variables selection
crude oil
HTGC
biodiesel, smartphone, photometrix, imagem, PLS
OPS
topic Variables selection
crude oil
HTGC
PLS
OPS
Variables selection
crude oil
HTGC
biodiesel, smartphone, photometrix, imagem, PLS
OPS
description High-temperature gas chromatography (HTGC) is an analytical technique employed in the petroleum industry for component separation. By incorporating chemometrics, HTGC data can be effectively utilized to predict various properties of crude oil. However, HTGC chromatograms generate a substantial number of variables, some of which may lack pertinent chemical information. Consequently, employing variable selection methods becomes crucial to reduce the number of variables and enhance the predictive capability of calibration models. In this study, the interval partial least squares (iPLS), synergy interval partial least squares (siPLS), and ordered predictors selection (OPS) methods were applied for variable selection to construct linear regression models. The main objective was to investigate the potential of these methods in predicting eight properties of crude oil: American Petroleum Institute (API) gravity, standardized kinematic viscosity at 50 °C (VISp), flash point (FP), Reid vapor pressure (RVP), micro carbon residue (MCR), saturates (SAT), aromatics (ARO), and polar (POL) content.  While all variable selection methods yielded satisfactory results, the OPS-PLS regression models consistently exhibited the best performance in estimating these properties, achieving root mean squared error of prediction (RMSEP) values of 1.244 for API, 0.029 for VISp, 15.356 °C for FP, 0.324 kPa for RVP, 0.629 wt% for MCR, 3.691 wt% for SAT, 2.939 wt% for ARO, and 3.374 wt% for POL. Variable selection demonstrated remarkable effectiveness, significantly improving the accuracy of the models, and allowing for the creation of concise models with a focused set of variables.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.ifes.edu.br/index.php/ric/article/view/2516
10.36524/ric.v10i1.2516
url https://ojs.ifes.edu.br/index.php/ric/article/view/2516
identifier_str_mv 10.36524/ric.v10i1.2516
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ojs.ifes.edu.br/index.php/ric/article/view/2516/1131
dc.rights.driver.fl_str_mv Copyright (c) 2024 Revista Ifes Ciência
https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 Revista Ifes Ciência
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Federal do Espírito Santo
publisher.none.fl_str_mv Instituto Federal do Espírito Santo
dc.source.none.fl_str_mv Revista Ifes Ciência ; v. 10 n. 1 (2024): Revista Ifes Ciência; 01-27
2359-4799
10.36524/ric.v10i1
reponame:Revista Eletrônica Debates em Educação Científica e Tecnológica
instname:Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES)
instacron:IFES
instname_str Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES)
instacron_str IFES
institution IFES
reponame_str Revista Eletrônica Debates em Educação Científica e Tecnológica
collection Revista Eletrônica Debates em Educação Científica e Tecnológica
repository.name.fl_str_mv Revista Eletrônica Debates em Educação Científica e Tecnológica - Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES)
repository.mail.fl_str_mv revistadect@gmail.com||sidneiquezada@gmail.com
_version_ 1798948024304533504