Fault detection in bearing using the Wavelet transform
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Vértices (Campos dos Goitacazes. Online) |
Texto Completo: | https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839 |
Resumo: | Faults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs. |
id |
IFFlu_f1f28fd139263a86bfde9e5c704c9da3 |
---|---|
oai_identifier_str |
oai:ojs.editoraessentia.iff.edu.br:article/5839 |
network_acronym_str |
IFFlu |
network_name_str |
Vértices (Campos dos Goitacazes. Online) |
repository_id_str |
|
spelling |
Fault detection in bearing using the Wavelet transformEmprego da transformada de Wavelet na detecção de falhas em rolamentosPredictive maintenanceFault detectionBearingWavelet transformManutenção preditivaDetecção de falhasRolamentosTransformada de WaveletFaults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs.As falhas em rolamentos são muito comuns em vários segmentos industriais. O monitoramento do estado de funcionamento através de técnicas preditivas é imprescindível para evitar que as falhas inesperadas ocorram. Dessa forma é possível aumentar a disponibilidade do equipamento dentro da planta industrial. Um dos parâmetros de monitoramento mais relevantes para avaliar a condição de trabalho de um equipamento é analisar o seu modo de vibração. Entretanto, os sinais de vibração provenientes de defeitos em rolamentos são de natureza transiente, não sendo bem averiguados pelas técnicas de análises convencionais. O objetivo deste trabalho consiste em apresentar um estudo da Transformada de Wavelet, técnica recente e promissora para detecção de falhas em rolamentos, demonstrando as suas vantagens e limitações utilizando o software Matlab. Os defeitos foram inseridos em diferentes rolamentos, montados numa banca de teste. Os resultados revelam a potencialidade e viabilidade da Transformada de Wavelet, podendo ser incluída em programas de Manutenção Preditiva.Instituto Federal de Educação, Ciência e Tecnologia Fluminense2016-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://editoraessentia.iff.edu.br/index.php/vertices/article/view/583910.19180/1809-2667.v18n32016p157-171Revista Vértices; Vol. 18 No. 3 (2016): Sept./Dec.; 157-171Revista Vértices; Vol. 18 Núm. 3 (2016): sept./dic.; 157-171Revista Vértices; v. 18 n. 3 (2016): set./dez.; 157-1711809-26671415-2843reponame:Vértices (Campos dos Goitacazes. Online)instname:Centro Federal de Educação Tecnológica de Campos dos Goytacazesinstacron:IFFluminenseporhttps://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839/6584Reis, Rômulo de AndradeSilva, Vinícius Augusto DinizMonteiro Lamim Filho, Paulo CezarBrito, Jorge NeiChristoforo, André Luisinfo:eu-repo/semantics/openAccess2021-02-24T10:08:02Zoai:ojs.editoraessentia.iff.edu.br:article/5839Revistahttps://essentiaeditora.iff.edu.br/index.php/vertices/PUBhttps://essentiaeditora.iff.edu.br/index.php/vertices/oaiessentia@iff.edu.br1809-26671415-2843opendoar:2021-02-24T10:08:02Vértices (Campos dos Goitacazes. Online) - Centro Federal de Educação Tecnológica de Campos dos Goytacazesfalse |
dc.title.none.fl_str_mv |
Fault detection in bearing using the Wavelet transform Emprego da transformada de Wavelet na detecção de falhas em rolamentos |
title |
Fault detection in bearing using the Wavelet transform |
spellingShingle |
Fault detection in bearing using the Wavelet transform Reis, Rômulo de Andrade Predictive maintenance Fault detection Bearing Wavelet transform Manutenção preditiva Detecção de falhas Rolamentos Transformada de Wavelet |
title_short |
Fault detection in bearing using the Wavelet transform |
title_full |
Fault detection in bearing using the Wavelet transform |
title_fullStr |
Fault detection in bearing using the Wavelet transform |
title_full_unstemmed |
Fault detection in bearing using the Wavelet transform |
title_sort |
Fault detection in bearing using the Wavelet transform |
author |
Reis, Rômulo de Andrade |
author_facet |
Reis, Rômulo de Andrade Silva, Vinícius Augusto Diniz Monteiro Lamim Filho, Paulo Cezar Brito, Jorge Nei Christoforo, André Luis |
author_role |
author |
author2 |
Silva, Vinícius Augusto Diniz Monteiro Lamim Filho, Paulo Cezar Brito, Jorge Nei Christoforo, André Luis |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Reis, Rômulo de Andrade Silva, Vinícius Augusto Diniz Monteiro Lamim Filho, Paulo Cezar Brito, Jorge Nei Christoforo, André Luis |
dc.subject.por.fl_str_mv |
Predictive maintenance Fault detection Bearing Wavelet transform Manutenção preditiva Detecção de falhas Rolamentos Transformada de Wavelet |
topic |
Predictive maintenance Fault detection Bearing Wavelet transform Manutenção preditiva Detecção de falhas Rolamentos Transformada de Wavelet |
description |
Faults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839 10.19180/1809-2667.v18n32016p157-171 |
url |
https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839 |
identifier_str_mv |
10.19180/1809-2667.v18n32016p157-171 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839/6584 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia Fluminense |
publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia Fluminense |
dc.source.none.fl_str_mv |
Revista Vértices; Vol. 18 No. 3 (2016): Sept./Dec.; 157-171 Revista Vértices; Vol. 18 Núm. 3 (2016): sept./dic.; 157-171 Revista Vértices; v. 18 n. 3 (2016): set./dez.; 157-171 1809-2667 1415-2843 reponame:Vértices (Campos dos Goitacazes. Online) instname:Centro Federal de Educação Tecnológica de Campos dos Goytacazes instacron:IFFluminense |
instname_str |
Centro Federal de Educação Tecnológica de Campos dos Goytacazes |
instacron_str |
IFFluminense |
institution |
IFFluminense |
reponame_str |
Vértices (Campos dos Goitacazes. Online) |
collection |
Vértices (Campos dos Goitacazes. Online) |
repository.name.fl_str_mv |
Vértices (Campos dos Goitacazes. Online) - Centro Federal de Educação Tecnológica de Campos dos Goytacazes |
repository.mail.fl_str_mv |
essentia@iff.edu.br |
_version_ |
1797077561637863424 |