Fault detection in bearing using the Wavelet transform

Detalhes bibliográficos
Autor(a) principal: Reis, Rômulo de Andrade
Data de Publicação: 2016
Outros Autores: Silva, Vinícius Augusto Diniz, Monteiro Lamim Filho, Paulo Cezar, Brito, Jorge Nei, Christoforo, André Luis
Tipo de documento: Artigo
Idioma: por
Título da fonte: Vértices (Campos dos Goitacazes. Online)
Texto Completo: https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839
Resumo: Faults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs.
id IFFlu_f1f28fd139263a86bfde9e5c704c9da3
oai_identifier_str oai:ojs.editoraessentia.iff.edu.br:article/5839
network_acronym_str IFFlu
network_name_str Vértices (Campos dos Goitacazes. Online)
repository_id_str
spelling Fault detection in bearing using the Wavelet transformEmprego da transformada de Wavelet na detecção de falhas em rolamentosPredictive maintenanceFault detectionBearingWavelet transformManutenção preditivaDetecção de falhasRolamentosTransformada de WaveletFaults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs.As falhas em rolamentos são muito comuns em vários segmentos industriais. O monitoramento do estado de funcionamento através de técnicas preditivas é imprescindível para evitar que as falhas inesperadas ocorram. Dessa forma é possível aumentar a disponibilidade do equipamento dentro da planta industrial. Um dos parâmetros de monitoramento mais relevantes para avaliar a condição de trabalho de um equipamento é analisar o seu modo de vibração. Entretanto, os sinais de vibração provenientes de defeitos em rolamentos são de natureza transiente, não sendo bem averiguados pelas técnicas de análises convencionais. O objetivo deste trabalho consiste em apresentar um estudo da Transformada de Wavelet, técnica recente e promissora para detecção de falhas em rolamentos, demonstrando as suas vantagens e limitações utilizando o software Matlab. Os defeitos foram inseridos em diferentes rolamentos, montados numa banca de teste. Os resultados revelam a potencialidade e viabilidade da Transformada de Wavelet, podendo ser incluída em programas de Manutenção Preditiva.Instituto Federal de Educação, Ciência e Tecnologia Fluminense2016-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://editoraessentia.iff.edu.br/index.php/vertices/article/view/583910.19180/1809-2667.v18n32016p157-171Revista Vértices; Vol. 18 No. 3 (2016): Sept./Dec.; 157-171Revista Vértices; Vol. 18 Núm. 3 (2016): sept./dic.; 157-171Revista Vértices; v. 18 n. 3 (2016): set./dez.; 157-1711809-26671415-2843reponame:Vértices (Campos dos Goitacazes. Online)instname:Centro Federal de Educação Tecnológica de Campos dos Goytacazesinstacron:IFFluminenseporhttps://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839/6584Reis, Rômulo de AndradeSilva, Vinícius Augusto DinizMonteiro Lamim Filho, Paulo CezarBrito, Jorge NeiChristoforo, André Luisinfo:eu-repo/semantics/openAccess2021-02-24T10:08:02Zoai:ojs.editoraessentia.iff.edu.br:article/5839Revistahttps://essentiaeditora.iff.edu.br/index.php/vertices/PUBhttps://essentiaeditora.iff.edu.br/index.php/vertices/oaiessentia@iff.edu.br1809-26671415-2843opendoar:2021-02-24T10:08:02Vértices (Campos dos Goitacazes. Online) - Centro Federal de Educação Tecnológica de Campos dos Goytacazesfalse
dc.title.none.fl_str_mv Fault detection in bearing using the Wavelet transform
Emprego da transformada de Wavelet na detecção de falhas em rolamentos
title Fault detection in bearing using the Wavelet transform
spellingShingle Fault detection in bearing using the Wavelet transform
Reis, Rômulo de Andrade
Predictive maintenance
Fault detection
Bearing
Wavelet transform
Manutenção preditiva
Detecção de falhas
Rolamentos
Transformada de Wavelet
title_short Fault detection in bearing using the Wavelet transform
title_full Fault detection in bearing using the Wavelet transform
title_fullStr Fault detection in bearing using the Wavelet transform
title_full_unstemmed Fault detection in bearing using the Wavelet transform
title_sort Fault detection in bearing using the Wavelet transform
author Reis, Rômulo de Andrade
author_facet Reis, Rômulo de Andrade
Silva, Vinícius Augusto Diniz
Monteiro Lamim Filho, Paulo Cezar
Brito, Jorge Nei
Christoforo, André Luis
author_role author
author2 Silva, Vinícius Augusto Diniz
Monteiro Lamim Filho, Paulo Cezar
Brito, Jorge Nei
Christoforo, André Luis
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Reis, Rômulo de Andrade
Silva, Vinícius Augusto Diniz
Monteiro Lamim Filho, Paulo Cezar
Brito, Jorge Nei
Christoforo, André Luis
dc.subject.por.fl_str_mv Predictive maintenance
Fault detection
Bearing
Wavelet transform
Manutenção preditiva
Detecção de falhas
Rolamentos
Transformada de Wavelet
topic Predictive maintenance
Fault detection
Bearing
Wavelet transform
Manutenção preditiva
Detecção de falhas
Rolamentos
Transformada de Wavelet
description Faults in bearing are very common in various industrial segments. Monitoring its operating status through predictive techniques is essential to prevent unexpected failures. Thus, it is possible to increase the availability of the equipment inside the plant. Vibration Analysis is one of the most relevant monitoring parameters to assess the working condition of the equipment. However, the vibration signals from defects in bearings are of transient nature, therefore not being well analyzed by conventional analysis techniques. The purpose of this research is to present a study of the Wavelet Transform, a recent promising technique to detect bearing faults demonstrating its advantages and limitations using Matlab software. The defects were inserted in three different bearings mounted on an experimental bench. Results show the capability and feasibility of the Wavelet Transform, and its potential to be included in predictive maintenance programs.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839
10.19180/1809-2667.v18n32016p157-171
url https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839
identifier_str_mv 10.19180/1809-2667.v18n32016p157-171
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://editoraessentia.iff.edu.br/index.php/vertices/article/view/5839/6584
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia Fluminense
publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia Fluminense
dc.source.none.fl_str_mv Revista Vértices; Vol. 18 No. 3 (2016): Sept./Dec.; 157-171
Revista Vértices; Vol. 18 Núm. 3 (2016): sept./dic.; 157-171
Revista Vértices; v. 18 n. 3 (2016): set./dez.; 157-171
1809-2667
1415-2843
reponame:Vértices (Campos dos Goitacazes. Online)
instname:Centro Federal de Educação Tecnológica de Campos dos Goytacazes
instacron:IFFluminense
instname_str Centro Federal de Educação Tecnológica de Campos dos Goytacazes
instacron_str IFFluminense
institution IFFluminense
reponame_str Vértices (Campos dos Goitacazes. Online)
collection Vértices (Campos dos Goitacazes. Online)
repository.name.fl_str_mv Vértices (Campos dos Goitacazes. Online) - Centro Federal de Educação Tecnológica de Campos dos Goytacazes
repository.mail.fl_str_mv essentia@iff.edu.br
_version_ 1797077561637863424