Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu

Detalhes bibliográficos
Autor(a) principal: Khandaker,M. M.
Data de Publicação: 2022
Outros Autores: Saidi,A., Badaluddin,N. A., Yusoff,N., Majrashi,A., Alenazi,M. M., Saifuddin,M., Alam,Md. A., Mohd,K. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842022000100279
Resumo: Abstract The wax apple or jambu madu, is a non-climacteric tropical fruit from Myrtaceae family and widely cultivated in South East Asia. The limited availability of good quality seedlings of wax apple is the main problem to development of flourish it’s market share in the current fruit industry. Therefore, in order to produce good quality planting materials, a study aimed at optimizing propagation and adventitious rooting technique and survivability of wax apple air layer was conducted. In this study, four different levels of Indole-3-Butyric Acid (IBA) concentration (0, 1000, 1500 and 2000 mg L-1) and three rooting media (sphagnum moss, vermicompost and garden soil) were applied after removal of bark (phloem) on the shoot to determine the effect on rooting and survivability of the wax apple air layer under field conditions. The results showed that the wax apple shoots treated with 2000 mg L-1 IBA produced the significantly higher number of roots, increased length of root, diameter of branch, length of branch, number of leaf and leaf area of air layers. In addition, the highest chlorophyll content and stomatal aperture were recorded in 2000 mg L-1 IBA treatment compared to other treatments including control. Vermicompost medium was better than garden soil and sphagnum moss in respect of rooting and survivability of air layers. The results showed that the combination of 2000 mg L-1 IBA and vermicompost as rooting media give the best combination to root initiation, root number, root length and survival rate (100%) of wax apple air layers. From this study, it can be concluded that 2000 mg L-1 IBA and vermicompost treatment enhance the root initiation, early establishment and survivability of wax apple air layered under field conditions.
id IIE-1_3d1c6c1b44b750a8a2f5247347946365
oai_identifier_str oai:scielo:S1519-69842022000100279
network_acronym_str IIE-1
network_name_str Brazilian Journal of Biology
repository_id_str
spelling Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Maduvegetative propagationfruitauxinrooting mediasurvivabilitywax appleAbstract The wax apple or jambu madu, is a non-climacteric tropical fruit from Myrtaceae family and widely cultivated in South East Asia. The limited availability of good quality seedlings of wax apple is the main problem to development of flourish it’s market share in the current fruit industry. Therefore, in order to produce good quality planting materials, a study aimed at optimizing propagation and adventitious rooting technique and survivability of wax apple air layer was conducted. In this study, four different levels of Indole-3-Butyric Acid (IBA) concentration (0, 1000, 1500 and 2000 mg L-1) and three rooting media (sphagnum moss, vermicompost and garden soil) were applied after removal of bark (phloem) on the shoot to determine the effect on rooting and survivability of the wax apple air layer under field conditions. The results showed that the wax apple shoots treated with 2000 mg L-1 IBA produced the significantly higher number of roots, increased length of root, diameter of branch, length of branch, number of leaf and leaf area of air layers. In addition, the highest chlorophyll content and stomatal aperture were recorded in 2000 mg L-1 IBA treatment compared to other treatments including control. Vermicompost medium was better than garden soil and sphagnum moss in respect of rooting and survivability of air layers. The results showed that the combination of 2000 mg L-1 IBA and vermicompost as rooting media give the best combination to root initiation, root number, root length and survival rate (100%) of wax apple air layers. From this study, it can be concluded that 2000 mg L-1 IBA and vermicompost treatment enhance the root initiation, early establishment and survivability of wax apple air layered under field conditions.Instituto Internacional de Ecologia2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842022000100279Brazilian Journal of Biology v.82 2022reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/1519-6984.256277info:eu-repo/semantics/openAccessKhandaker,M. M.Saidi,A.Badaluddin,N. A.Yusoff,N.Majrashi,A.Alenazi,M. M.Saifuddin,M.Alam,Md. A.Mohd,K. S.eng2022-03-23T00:00:00Zoai:scielo:S1519-69842022000100279Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2022-03-23T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false
dc.title.none.fl_str_mv Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
title Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
spellingShingle Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
Khandaker,M. M.
vegetative propagation
fruit
auxin
rooting media
survivability
wax apple
title_short Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
title_full Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
title_fullStr Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
title_full_unstemmed Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
title_sort Effects of Indole-3-Butyric Acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu
author Khandaker,M. M.
author_facet Khandaker,M. M.
Saidi,A.
Badaluddin,N. A.
Yusoff,N.
Majrashi,A.
Alenazi,M. M.
Saifuddin,M.
Alam,Md. A.
Mohd,K. S.
author_role author
author2 Saidi,A.
Badaluddin,N. A.
Yusoff,N.
Majrashi,A.
Alenazi,M. M.
Saifuddin,M.
Alam,Md. A.
Mohd,K. S.
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Khandaker,M. M.
Saidi,A.
Badaluddin,N. A.
Yusoff,N.
Majrashi,A.
Alenazi,M. M.
Saifuddin,M.
Alam,Md. A.
Mohd,K. S.
dc.subject.por.fl_str_mv vegetative propagation
fruit
auxin
rooting media
survivability
wax apple
topic vegetative propagation
fruit
auxin
rooting media
survivability
wax apple
description Abstract The wax apple or jambu madu, is a non-climacteric tropical fruit from Myrtaceae family and widely cultivated in South East Asia. The limited availability of good quality seedlings of wax apple is the main problem to development of flourish it’s market share in the current fruit industry. Therefore, in order to produce good quality planting materials, a study aimed at optimizing propagation and adventitious rooting technique and survivability of wax apple air layer was conducted. In this study, four different levels of Indole-3-Butyric Acid (IBA) concentration (0, 1000, 1500 and 2000 mg L-1) and three rooting media (sphagnum moss, vermicompost and garden soil) were applied after removal of bark (phloem) on the shoot to determine the effect on rooting and survivability of the wax apple air layer under field conditions. The results showed that the wax apple shoots treated with 2000 mg L-1 IBA produced the significantly higher number of roots, increased length of root, diameter of branch, length of branch, number of leaf and leaf area of air layers. In addition, the highest chlorophyll content and stomatal aperture were recorded in 2000 mg L-1 IBA treatment compared to other treatments including control. Vermicompost medium was better than garden soil and sphagnum moss in respect of rooting and survivability of air layers. The results showed that the combination of 2000 mg L-1 IBA and vermicompost as rooting media give the best combination to root initiation, root number, root length and survival rate (100%) of wax apple air layers. From this study, it can be concluded that 2000 mg L-1 IBA and vermicompost treatment enhance the root initiation, early establishment and survivability of wax apple air layered under field conditions.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842022000100279
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842022000100279
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1519-6984.256277
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Internacional de Ecologia
publisher.none.fl_str_mv Instituto Internacional de Ecologia
dc.source.none.fl_str_mv Brazilian Journal of Biology v.82 2022
reponame:Brazilian Journal of Biology
instname:Instituto Internacional de Ecologia (IIE)
instacron:IIE
instname_str Instituto Internacional de Ecologia (IIE)
instacron_str IIE
institution IIE
reponame_str Brazilian Journal of Biology
collection Brazilian Journal of Biology
repository.name.fl_str_mv Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)
repository.mail.fl_str_mv bjb@bjb.com.br||bjb@bjb.com.br
_version_ 1752129889230651392