Applying fuzzy logic to estimate the parameters of the length-weight relationship
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611 |
Resumo: | Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system. |
id |
IIE-1_406e6fb3f68fcce8df1dca314cd13cfc |
---|---|
oai_identifier_str |
oai:scielo:S1519-69842016000300611 |
network_acronym_str |
IIE-1 |
network_name_str |
Brazilian Journal of Biology |
repository_id_str |
|
spelling |
Applying fuzzy logic to estimate the parameters of the length-weight relationshipallometric modelCichlafuzzy logicparameter estimationAbstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.Instituto Internacional de Ecologia2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611Brazilian Journal of Biology v.76 n.3 2016reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/1519-6984.20014info:eu-repo/semantics/openAccessBitar,S. D.Campos,C. P.Freitas,C. E. C.eng2016-06-16T00:00:00Zoai:scielo:S1519-69842016000300611Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2016-06-16T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false |
dc.title.none.fl_str_mv |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
title |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
spellingShingle |
Applying fuzzy logic to estimate the parameters of the length-weight relationship Bitar,S. D. allometric model Cichla fuzzy logic parameter estimation |
title_short |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
title_full |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
title_fullStr |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
title_full_unstemmed |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
title_sort |
Applying fuzzy logic to estimate the parameters of the length-weight relationship |
author |
Bitar,S. D. |
author_facet |
Bitar,S. D. Campos,C. P. Freitas,C. E. C. |
author_role |
author |
author2 |
Campos,C. P. Freitas,C. E. C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bitar,S. D. Campos,C. P. Freitas,C. E. C. |
dc.subject.por.fl_str_mv |
allometric model Cichla fuzzy logic parameter estimation |
topic |
allometric model Cichla fuzzy logic parameter estimation |
description |
Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1519-6984.20014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Internacional de Ecologia |
publisher.none.fl_str_mv |
Instituto Internacional de Ecologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Biology v.76 n.3 2016 reponame:Brazilian Journal of Biology instname:Instituto Internacional de Ecologia (IIE) instacron:IIE |
instname_str |
Instituto Internacional de Ecologia (IIE) |
instacron_str |
IIE |
institution |
IIE |
reponame_str |
Brazilian Journal of Biology |
collection |
Brazilian Journal of Biology |
repository.name.fl_str_mv |
Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE) |
repository.mail.fl_str_mv |
bjb@bjb.com.br||bjb@bjb.com.br |
_version_ |
1752129883247476736 |