Applying fuzzy logic to estimate the parameters of the length-weight relationship

Detalhes bibliográficos
Autor(a) principal: Bitar,S. D.
Data de Publicação: 2016
Outros Autores: Campos,C. P., Freitas,C. E. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611
Resumo: Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.
id IIE-1_406e6fb3f68fcce8df1dca314cd13cfc
oai_identifier_str oai:scielo:S1519-69842016000300611
network_acronym_str IIE-1
network_name_str Brazilian Journal of Biology
repository_id_str
spelling Applying fuzzy logic to estimate the parameters of the length-weight relationshipallometric modelCichlafuzzy logicparameter estimationAbstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.Instituto Internacional de Ecologia2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611Brazilian Journal of Biology v.76 n.3 2016reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/1519-6984.20014info:eu-repo/semantics/openAccessBitar,S. D.Campos,C. P.Freitas,C. E. C.eng2016-06-16T00:00:00Zoai:scielo:S1519-69842016000300611Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2016-06-16T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false
dc.title.none.fl_str_mv Applying fuzzy logic to estimate the parameters of the length-weight relationship
title Applying fuzzy logic to estimate the parameters of the length-weight relationship
spellingShingle Applying fuzzy logic to estimate the parameters of the length-weight relationship
Bitar,S. D.
allometric model
Cichla
fuzzy logic
parameter estimation
title_short Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_full Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_fullStr Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_full_unstemmed Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_sort Applying fuzzy logic to estimate the parameters of the length-weight relationship
author Bitar,S. D.
author_facet Bitar,S. D.
Campos,C. P.
Freitas,C. E. C.
author_role author
author2 Campos,C. P.
Freitas,C. E. C.
author2_role author
author
dc.contributor.author.fl_str_mv Bitar,S. D.
Campos,C. P.
Freitas,C. E. C.
dc.subject.por.fl_str_mv allometric model
Cichla
fuzzy logic
parameter estimation
topic allometric model
Cichla
fuzzy logic
parameter estimation
description Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1519-6984.20014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Internacional de Ecologia
publisher.none.fl_str_mv Instituto Internacional de Ecologia
dc.source.none.fl_str_mv Brazilian Journal of Biology v.76 n.3 2016
reponame:Brazilian Journal of Biology
instname:Instituto Internacional de Ecologia (IIE)
instacron:IIE
instname_str Instituto Internacional de Ecologia (IIE)
instacron_str IIE
institution IIE
reponame_str Brazilian Journal of Biology
collection Brazilian Journal of Biology
repository.name.fl_str_mv Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)
repository.mail.fl_str_mv bjb@bjb.com.br||bjb@bjb.com.br
_version_ 1752129883247476736