Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842015000200003 |
Resumo: | The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20×20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 – Olson Exponential Model (1963), which considers the constant K, 2 – Model proposed by Fountain and Schowalter (2004), 3 – Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p> 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition process, no difficulties of convergence were observed in Olson model. So, this model can be used to describe decomposition curves in different types of environments, estimating K appropriately. |
id |
IIE-1_5c35bf8acd17a14aa403a5d50a8bcc7a |
---|---|
oai_identifier_str |
oai:scielo:S1519-69842015000200003 |
network_acronym_str |
IIE-1 |
network_name_str |
Brazilian Journal of Biology |
repository_id_str |
|
spelling |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazillitterfallnutrient cyclingorganic matter and nutrient lossmathematical modelsbiosphere reserveThe study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20×20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 – Olson Exponential Model (1963), which considers the constant K, 2 – Model proposed by Fountain and Schowalter (2004), 3 – Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p> 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition process, no difficulties of convergence were observed in Olson model. So, this model can be used to describe decomposition curves in different types of environments, estimating K appropriately.Instituto Internacional de Ecologia2015-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842015000200003Brazilian Journal of Biology v.75 n.2 2015reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE010.1590/1519-6984.08413info:eu-repo/semantics/openAccessNunes,FP.Garcia,QS.eng2015-06-23T00:00:00Zoai:scielo:S1519-69842015000200003Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2015-06-23T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false |
dc.title.none.fl_str_mv |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
title |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
spellingShingle |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil Nunes,FP. litterfall nutrient cycling organic matter and nutrient loss mathematical models biosphere reserve |
title_short |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
title_full |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
title_fullStr |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
title_full_unstemmed |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
title_sort |
Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil |
author |
Nunes,FP. |
author_facet |
Nunes,FP. Garcia,QS. |
author_role |
author |
author2 |
Garcia,QS. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Nunes,FP. Garcia,QS. |
dc.subject.por.fl_str_mv |
litterfall nutrient cycling organic matter and nutrient loss mathematical models biosphere reserve |
topic |
litterfall nutrient cycling organic matter and nutrient loss mathematical models biosphere reserve |
description |
The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20×20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 – Olson Exponential Model (1963), which considers the constant K, 2 – Model proposed by Fountain and Schowalter (2004), 3 – Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p> 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition process, no difficulties of convergence were observed in Olson model. So, this model can be used to describe decomposition curves in different types of environments, estimating K appropriately. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842015000200003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842015000200003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
010.1590/1519-6984.08413 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Internacional de Ecologia |
publisher.none.fl_str_mv |
Instituto Internacional de Ecologia |
dc.source.none.fl_str_mv |
Brazilian Journal of Biology v.75 n.2 2015 reponame:Brazilian Journal of Biology instname:Instituto Internacional de Ecologia (IIE) instacron:IIE |
instname_str |
Instituto Internacional de Ecologia (IIE) |
instacron_str |
IIE |
institution |
IIE |
reponame_str |
Brazilian Journal of Biology |
collection |
Brazilian Journal of Biology |
repository.name.fl_str_mv |
Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE) |
repository.mail.fl_str_mv |
bjb@bjb.com.br||bjb@bjb.com.br |
_version_ |
1752129880859869184 |