Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior

Detalhes bibliográficos
Autor(a) principal: Gibbons,I.
Data de Publicação: 2020
Outros Autores: Sundaram,V., Adogwa,A., Odekunle,A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842020000100180
Resumo: Abstract The understanding of the echolocation by studying different auditory nuclei of echolocating bats can be an important link in elucidating questions arising in relation to their foraging behavior. The superior olivary complex (SOC) is the primary center for processing the binaural cues used in sound localization since echo locating bats rely on acoustic cues to navigate and capture prey while in flight. The present study was taken to test the hypothesis that the SOC of echolocating neotropical bats with different foraging behavior will exhibit morphological variations in relative size, degree of complexity and spatial distribution. The brains were collected from six male adult bats of each species: Noctilio leporinus (fish eating), Phyllostomus hastatus (carnivorous/omnivorous) and Carollia perspicillata (fruit eating). They were double-embedded and transverse serial sections were cut and stained with cresyl fast violet. The SOC measured as 640 ± 70 µm in the N. leporinus bat, 480 ± 50 µm in the P. hastatus and 240 ± 30 µm in the C. perspicillata bat. The principal nuclei of the SOC of in all three bats were the LSO, MSO and MNTB. The MSO and LSO were very well developed in N. leporinus bats. The MSO of N. leporinus bat subdivided into DMSO and VMSO. The main cell type of cells present in MSO and LSO are dark staining multipolar cells in all the bats studied. The well-developed MSO and LSO of N. leporinus bats indicate that these bats are highly sensitive to low frequency sounds and interaural intensity differences, which help these bats to forage over water by using various types of echolocation signals. The average size of SOC in P. hastatus and C. perspicillata bats can be attributed to the fact that these bats use vision and smell along with echolocation to forage the food.
id IIE-1_623ba647b54cf513fc3a3e2ef919deb0
oai_identifier_str oai:scielo:S1519-69842020000100180
network_acronym_str IIE-1
network_name_str Brazilian Journal of Biology
repository_id_str
spelling Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behaviorbatssuperior olivary complexmedial superior olivelateral superior oliveAbstract The understanding of the echolocation by studying different auditory nuclei of echolocating bats can be an important link in elucidating questions arising in relation to their foraging behavior. The superior olivary complex (SOC) is the primary center for processing the binaural cues used in sound localization since echo locating bats rely on acoustic cues to navigate and capture prey while in flight. The present study was taken to test the hypothesis that the SOC of echolocating neotropical bats with different foraging behavior will exhibit morphological variations in relative size, degree of complexity and spatial distribution. The brains were collected from six male adult bats of each species: Noctilio leporinus (fish eating), Phyllostomus hastatus (carnivorous/omnivorous) and Carollia perspicillata (fruit eating). They were double-embedded and transverse serial sections were cut and stained with cresyl fast violet. The SOC measured as 640 ± 70 µm in the N. leporinus bat, 480 ± 50 µm in the P. hastatus and 240 ± 30 µm in the C. perspicillata bat. The principal nuclei of the SOC of in all three bats were the LSO, MSO and MNTB. The MSO and LSO were very well developed in N. leporinus bats. The MSO of N. leporinus bat subdivided into DMSO and VMSO. The main cell type of cells present in MSO and LSO are dark staining multipolar cells in all the bats studied. The well-developed MSO and LSO of N. leporinus bats indicate that these bats are highly sensitive to low frequency sounds and interaural intensity differences, which help these bats to forage over water by using various types of echolocation signals. The average size of SOC in P. hastatus and C. perspicillata bats can be attributed to the fact that these bats use vision and smell along with echolocation to forage the food.Instituto Internacional de Ecologia2020-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842020000100180Brazilian Journal of Biology v.80 n.1 2020reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/1519-6984.210489info:eu-repo/semantics/openAccessGibbons,I.Sundaram,V.Adogwa,A.Odekunle,A.eng2021-02-19T00:00:00Zoai:scielo:S1519-69842020000100180Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2021-02-19T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false
dc.title.none.fl_str_mv Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
title Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
spellingShingle Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
Gibbons,I.
bats
superior olivary complex
medial superior olive
lateral superior olive
title_short Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
title_full Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
title_fullStr Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
title_full_unstemmed Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
title_sort Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior
author Gibbons,I.
author_facet Gibbons,I.
Sundaram,V.
Adogwa,A.
Odekunle,A.
author_role author
author2 Sundaram,V.
Adogwa,A.
Odekunle,A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Gibbons,I.
Sundaram,V.
Adogwa,A.
Odekunle,A.
dc.subject.por.fl_str_mv bats
superior olivary complex
medial superior olive
lateral superior olive
topic bats
superior olivary complex
medial superior olive
lateral superior olive
description Abstract The understanding of the echolocation by studying different auditory nuclei of echolocating bats can be an important link in elucidating questions arising in relation to their foraging behavior. The superior olivary complex (SOC) is the primary center for processing the binaural cues used in sound localization since echo locating bats rely on acoustic cues to navigate and capture prey while in flight. The present study was taken to test the hypothesis that the SOC of echolocating neotropical bats with different foraging behavior will exhibit morphological variations in relative size, degree of complexity and spatial distribution. The brains were collected from six male adult bats of each species: Noctilio leporinus (fish eating), Phyllostomus hastatus (carnivorous/omnivorous) and Carollia perspicillata (fruit eating). They were double-embedded and transverse serial sections were cut and stained with cresyl fast violet. The SOC measured as 640 ± 70 µm in the N. leporinus bat, 480 ± 50 µm in the P. hastatus and 240 ± 30 µm in the C. perspicillata bat. The principal nuclei of the SOC of in all three bats were the LSO, MSO and MNTB. The MSO and LSO were very well developed in N. leporinus bats. The MSO of N. leporinus bat subdivided into DMSO and VMSO. The main cell type of cells present in MSO and LSO are dark staining multipolar cells in all the bats studied. The well-developed MSO and LSO of N. leporinus bats indicate that these bats are highly sensitive to low frequency sounds and interaural intensity differences, which help these bats to forage over water by using various types of echolocation signals. The average size of SOC in P. hastatus and C. perspicillata bats can be attributed to the fact that these bats use vision and smell along with echolocation to forage the food.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842020000100180
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842020000100180
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1519-6984.210489
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Internacional de Ecologia
publisher.none.fl_str_mv Instituto Internacional de Ecologia
dc.source.none.fl_str_mv Brazilian Journal of Biology v.80 n.1 2020
reponame:Brazilian Journal of Biology
instname:Instituto Internacional de Ecologia (IIE)
instacron:IIE
instname_str Instituto Internacional de Ecologia (IIE)
instacron_str IIE
institution IIE
reponame_str Brazilian Journal of Biology
collection Brazilian Journal of Biology
repository.name.fl_str_mv Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)
repository.mail.fl_str_mv bjb@bjb.com.br||bjb@bjb.com.br
_version_ 1752129886649057280