Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do INPA |
Texto Completo: | https://repositorio.inpa.gov.br/handle/1/16152 |
Resumo: | Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species. © 2012 Bracho-Nunez et al.; licensee Springer. |
id |
INPA-2_0da241d6e42398870ed97c4fe8320ba3 |
---|---|
oai_identifier_str |
oai:repositorio:1/16152 |
network_acronym_str |
INPA-2 |
network_name_str |
Repositório Institucional do INPA |
repository_id_str |
|
spelling |
Bracho-Nuñez, AraceliKnothe, Nina MariaCosta, Wallace R.Liberato, Maria Astrid RochaKleiss, BetinaRottenberger, StefaniePiedade, Maria Teresa FernandezKesselmeier, Jürgen2020-05-25T19:10:47Z2020-05-25T19:10:47Z2012https://repositorio.inpa.gov.br/handle/1/1615210.1186/2193-1801-1-9Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species. © 2012 Bracho-Nunez et al.; licensee Springer.Volume 1, Número 1, Pags. 1-16Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRoot anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplainsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSpringerPlusengreponame:Repositório Institucional do INPAinstname:Instituto Nacional de Pesquisas da Amazônia (INPA)instacron:INPAORIGINALartigo-inpa.pdfartigo-inpa.pdfapplication/pdf803195https://repositorio.inpa.gov.br/bitstream/1/16152/1/artigo-inpa.pdf096b85b344d21a191c97c89cebd26935MD511/161522020-05-25 16:38:09.275oai:repositorio:1/16152Repositório de PublicaçõesPUBhttps://repositorio.inpa.gov.br/oai/requestopendoar:2020-05-25T20:38:09Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)false |
dc.title.en.fl_str_mv |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
title |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
spellingShingle |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains Bracho-Nuñez, Araceli |
title_short |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
title_full |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
title_fullStr |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
title_full_unstemmed |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
title_sort |
Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under shortand long-term inundation of trees from Amazonian floodplains |
author |
Bracho-Nuñez, Araceli |
author_facet |
Bracho-Nuñez, Araceli Knothe, Nina Maria Costa, Wallace R. Liberato, Maria Astrid Rocha Kleiss, Betina Rottenberger, Stefanie Piedade, Maria Teresa Fernandez Kesselmeier, Jürgen |
author_role |
author |
author2 |
Knothe, Nina Maria Costa, Wallace R. Liberato, Maria Astrid Rocha Kleiss, Betina Rottenberger, Stefanie Piedade, Maria Teresa Fernandez Kesselmeier, Jürgen |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Bracho-Nuñez, Araceli Knothe, Nina Maria Costa, Wallace R. Liberato, Maria Astrid Rocha Kleiss, Betina Rottenberger, Stefanie Piedade, Maria Teresa Fernandez Kesselmeier, Jürgen |
description |
Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species. © 2012 Bracho-Nunez et al.; licensee Springer. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012 |
dc.date.accessioned.fl_str_mv |
2020-05-25T19:10:47Z |
dc.date.available.fl_str_mv |
2020-05-25T19:10:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.inpa.gov.br/handle/1/16152 |
dc.identifier.doi.none.fl_str_mv |
10.1186/2193-1801-1-9 |
url |
https://repositorio.inpa.gov.br/handle/1/16152 |
identifier_str_mv |
10.1186/2193-1801-1-9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Volume 1, Número 1, Pags. 1-16 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
SpringerPlus |
publisher.none.fl_str_mv |
SpringerPlus |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do INPA instname:Instituto Nacional de Pesquisas da Amazônia (INPA) instacron:INPA |
instname_str |
Instituto Nacional de Pesquisas da Amazônia (INPA) |
instacron_str |
INPA |
institution |
INPA |
reponame_str |
Repositório Institucional do INPA |
collection |
Repositório Institucional do INPA |
bitstream.url.fl_str_mv |
https://repositorio.inpa.gov.br/bitstream/1/16152/1/artigo-inpa.pdf |
bitstream.checksum.fl_str_mv |
096b85b344d21a191c97c89cebd26935 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA) |
repository.mail.fl_str_mv |
|
_version_ |
1809928897221885952 |