Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do INPA |
Texto Completo: | https://repositorio.inpa.gov.br/handle/1/16360 |
Resumo: | We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Air-borne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1mgC m-2h-1 for isoprene, 0.20mg C m-2h-1 for αpinene, and 0.39 mg C m-2 h-1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM). In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3-8×10 6 molecules cm-3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-theart atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5 ×106 molecules cm-3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign. The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO 2 flux estimate, 1-6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions. |
id |
INPA-2_475793da20723b9198b2c1b7e4299aef |
---|---|
oai_identifier_str |
oai:repositorio:1/16360 |
network_acronym_str |
INPA-2 |
network_name_str |
Repositório Institucional do INPA |
repository_id_str |
|
spelling |
Kühn, UweAndreae, Meinrat O.Ammann, ChristophAraüjo, Alessandro Carioca deBrancaleoni, EnzoCiccioli, PaoloDindorf, TamaraFrattoni, MassimilianoGatti, Luciana VanniGanzeveld, Laurens N.Kruijt, Bart J.Lelieveld, JosLloyd, JonMeixner, Franz X.Nobre, Antônio DonatoPöschl, UlrichSpirig, ChristophStefani, PaoloThielmann, AxelValentini, RiccardoKesselmeier, Jürgen2020-06-03T21:27:35Z2020-06-03T21:27:35Z2007https://repositorio.inpa.gov.br/handle/1/1636010.5194/acp-7-2855-2007We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Air-borne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1mgC m-2h-1 for isoprene, 0.20mg C m-2h-1 for αpinene, and 0.39 mg C m-2 h-1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM). In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3-8×10 6 molecules cm-3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-theart atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5 ×106 molecules cm-3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign. The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO 2 flux estimate, 1-6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions.Volume 7, Número 11, Pags. 2855-2879Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAirborne SurveyAtmospheric ChemistryCarbon BudgetClimate ModelingFlux MeasurementHydroxyl RadicalIsopreneMonoterpeneRainforestTropical ForestVertical ProfileVolatile Organic CompoundAmazonasBrasilManausSouth AmericaIsoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budgetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleAtmospheric Chemistry and Physicsengreponame:Repositório Institucional do INPAinstname:Instituto Nacional de Pesquisas da Amazônia (INPA)instacron:INPAORIGINALartigo-inpa.pdfartigo-inpa.pdfapplication/pdf1287638https://repositorio.inpa.gov.br/bitstream/1/16360/1/artigo-inpa.pdf8a09d3bbbcf8e9f438378986004171abMD511/163602020-06-03 17:34:45.107oai:repositorio:1/16360Repositório de PublicaçõesPUBhttps://repositorio.inpa.gov.br/oai/requestopendoar:2020-06-03T21:34:45Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)false |
dc.title.en.fl_str_mv |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
title |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
spellingShingle |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget Kühn, Uwe Airborne Survey Atmospheric Chemistry Carbon Budget Climate Modeling Flux Measurement Hydroxyl Radical Isoprene Monoterpene Rainforest Tropical Forest Vertical Profile Volatile Organic Compound Amazonas Brasil Manaus South America |
title_short |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
title_full |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
title_fullStr |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
title_full_unstemmed |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
title_sort |
Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget |
author |
Kühn, Uwe |
author_facet |
Kühn, Uwe Andreae, Meinrat O. Ammann, Christoph Araüjo, Alessandro Carioca de Brancaleoni, Enzo Ciccioli, Paolo Dindorf, Tamara Frattoni, Massimiliano Gatti, Luciana Vanni Ganzeveld, Laurens N. Kruijt, Bart J. Lelieveld, Jos Lloyd, Jon Meixner, Franz X. Nobre, Antônio Donato Pöschl, Ulrich Spirig, Christoph Stefani, Paolo Thielmann, Axel Valentini, Riccardo Kesselmeier, Jürgen |
author_role |
author |
author2 |
Andreae, Meinrat O. Ammann, Christoph Araüjo, Alessandro Carioca de Brancaleoni, Enzo Ciccioli, Paolo Dindorf, Tamara Frattoni, Massimiliano Gatti, Luciana Vanni Ganzeveld, Laurens N. Kruijt, Bart J. Lelieveld, Jos Lloyd, Jon Meixner, Franz X. Nobre, Antônio Donato Pöschl, Ulrich Spirig, Christoph Stefani, Paolo Thielmann, Axel Valentini, Riccardo Kesselmeier, Jürgen |
author2_role |
author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Kühn, Uwe Andreae, Meinrat O. Ammann, Christoph Araüjo, Alessandro Carioca de Brancaleoni, Enzo Ciccioli, Paolo Dindorf, Tamara Frattoni, Massimiliano Gatti, Luciana Vanni Ganzeveld, Laurens N. Kruijt, Bart J. Lelieveld, Jos Lloyd, Jon Meixner, Franz X. Nobre, Antônio Donato Pöschl, Ulrich Spirig, Christoph Stefani, Paolo Thielmann, Axel Valentini, Riccardo Kesselmeier, Jürgen |
dc.subject.eng.fl_str_mv |
Airborne Survey Atmospheric Chemistry Carbon Budget Climate Modeling Flux Measurement Hydroxyl Radical Isoprene Monoterpene Rainforest Tropical Forest Vertical Profile Volatile Organic Compound Amazonas Brasil Manaus South America |
topic |
Airborne Survey Atmospheric Chemistry Carbon Budget Climate Modeling Flux Measurement Hydroxyl Radical Isoprene Monoterpene Rainforest Tropical Forest Vertical Profile Volatile Organic Compound Amazonas Brasil Manaus South America |
description |
We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Air-borne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1mgC m-2h-1 for isoprene, 0.20mg C m-2h-1 for αpinene, and 0.39 mg C m-2 h-1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM). In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3-8×10 6 molecules cm-3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-theart atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5 ×106 molecules cm-3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign. The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO 2 flux estimate, 1-6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007 |
dc.date.accessioned.fl_str_mv |
2020-06-03T21:27:35Z |
dc.date.available.fl_str_mv |
2020-06-03T21:27:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.inpa.gov.br/handle/1/16360 |
dc.identifier.doi.none.fl_str_mv |
10.5194/acp-7-2855-2007 |
url |
https://repositorio.inpa.gov.br/handle/1/16360 |
identifier_str_mv |
10.5194/acp-7-2855-2007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Volume 7, Número 11, Pags. 2855-2879 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Atmospheric Chemistry and Physics |
publisher.none.fl_str_mv |
Atmospheric Chemistry and Physics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do INPA instname:Instituto Nacional de Pesquisas da Amazônia (INPA) instacron:INPA |
instname_str |
Instituto Nacional de Pesquisas da Amazônia (INPA) |
instacron_str |
INPA |
institution |
INPA |
reponame_str |
Repositório Institucional do INPA |
collection |
Repositório Institucional do INPA |
bitstream.url.fl_str_mv |
https://repositorio.inpa.gov.br/bitstream/1/16360/1/artigo-inpa.pdf |
bitstream.checksum.fl_str_mv |
8a09d3bbbcf8e9f438378986004171ab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA) |
repository.mail.fl_str_mv |
|
_version_ |
1809928900803821568 |