Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

Detalhes bibliográficos
Autor(a) principal: Réjou-Méchain, Maxime
Data de Publicação: 2014
Outros Autores: Muller-Landau, Helene C., Detto, Matteo, Thomas, Sean C., Le-Toan, Thuy, Saatchi, Sassan S., Barreto-Silva, Juan Sebastian, Bourg, Norman A., Bunyavejchewin, Sarayudh, Butt, Nathalie, Brockelman, Warren Y., Cao, Min, Cárdenas, Dairón, Chiang, Jyh-Min, Chuyong, George Bindeh, Clay, Keith, Condit, Richard S., Dattaraja, Handanakere Shavaramaiah, Davies, Stuart James, Duque M, Alvaro J., Esufali, Shameema T., Ewango, Corneille E.N., Fernando, R. H S, Fletcher, Christine Dawn, N Gunatilleke, I. A.U., Hao, Zhanqing, Harms, Kyle E., Hart, Terese B., Hérault, Bruno, Howe, Robert W., Hubbell, Stephen P., Johnson, Daniel J., Kenfack, David, Larson, Andrew J., Lin, Luxiang, Lin, Yiching, Lutz, James A., Makana, Jean Rémy, Malhi, Yadvinder Singh, Marthews, Toby R., McEwan, Ryan Walker, McMahon, Sean M., McShea, William J., Muscarella, Robert A., Nathalang, Anuttara, Noor, Nur Supardi Md, Nytch, Christopher J., Oliveira, Alexandre Adalardo de, Phillips, Richard P., Pongpattananurak, Nantachai, Punchi-Manage, Ruwan, Salim, R., Schurman, Jonathan S., Sukumar, Raman, Suresh, Hebbalalu Sathyanarayana, Suwanvecho, Udomlux, Thomas, Duncan W., Thompson, Jill, Uríarte, Ma?ia, Valencia, Renato L., Vicentini, Alberto, Wolf, Amy T., Yap, Sandra L., Yuan, Zuoqiang, Zartman, Charles Eugene, Zimmerman, Jess K., Chave, Jérôme
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do INPA
Texto Completo: https://repositorio.inpa.gov.br/handle/1/14893
Resumo: Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.
id INPA-2_81ba8ac1b6455c122a23a769c7b27946
oai_identifier_str oai:repositorio:1/14893
network_acronym_str INPA-2
network_name_str Repositório Institucional do INPA
repository_id_str
spelling Réjou-Méchain, MaximeMuller-Landau, Helene C.Detto, MatteoThomas, Sean C.Le-Toan, ThuySaatchi, Sassan S.Barreto-Silva, Juan SebastianBourg, Norman A.Bunyavejchewin, SarayudhButt, NathalieBrockelman, Warren Y.Cao, MinCárdenas, DairónChiang, Jyh-MinChuyong, George BindehClay, KeithCondit, Richard S.Dattaraja, Handanakere ShavaramaiahDavies, Stuart JamesDuque M, Alvaro J.Esufali, Shameema T.Ewango, Corneille E.N.Fernando, R. H SFletcher, Christine DawnN Gunatilleke, I. A.U.Hao, ZhanqingHarms, Kyle E.Hart, Terese B.Hérault, BrunoHowe, Robert W.Hubbell, Stephen P.Johnson, Daniel J.Kenfack, DavidLarson, Andrew J.Lin, LuxiangLin, YichingLutz, James A.Makana, Jean RémyMalhi, Yadvinder SinghMarthews, Toby R.McEwan, Ryan WalkerMcMahon, Sean M.McShea, William J.Muscarella, Robert A.Nathalang, AnuttaraNoor, Nur Supardi MdNytch, Christopher J.Oliveira, Alexandre Adalardo dePhillips, Richard P.Pongpattananurak, NantachaiPunchi-Manage, RuwanSalim, R.Schurman, Jonathan S.Sukumar, RamanSuresh, Hebbalalu SathyanarayanaSuwanvecho, UdomluxThomas, Duncan W.Thompson, JillUríarte, Ma?iaValencia, Renato L.Vicentini, AlbertoWolf, Amy T.Yap, Sandra L.Yuan, ZuoqiangZartman, Charles EugeneZimmerman, Jess K.Chave, Jérôme2020-05-07T13:47:14Z2020-05-07T13:47:14Z2014https://repositorio.inpa.gov.br/handle/1/1489310.5194/bg-11-6827-2014Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.Volume 11, Número 23, Pags. 6827-6840Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiomassCarbon SequestrationForest CoverRemote SensingSpatial DataLocal spatial structure of forest biomass and its consequences for remote sensing of carbon stocksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBiogeosciencesengreponame:Repositório Institucional do INPAinstname:Instituto Nacional de Pesquisas da Amazônia (INPA)instacron:INPAORIGINALartigo-inpa.pdfapplication/pdf492694https://repositorio.inpa.gov.br/bitstream/1/14893/1/artigo-inpa.pdf80316794f562e30442497bc037a98357MD51CC-LICENSElicense_rdfapplication/octet-stream914https://repositorio.inpa.gov.br/bitstream/1/14893/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD521/148932020-07-14 10:28:00.886oai:repositorio:1/14893Repositório de PublicaçõesPUBhttps://repositorio.inpa.gov.br/oai/requestopendoar:2020-07-14T14:28Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)false
dc.title.en.fl_str_mv Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
spellingShingle Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
Réjou-Méchain, Maxime
Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
title_short Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_full Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_fullStr Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_full_unstemmed Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
title_sort Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
author Réjou-Méchain, Maxime
author_facet Réjou-Méchain, Maxime
Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
author_role author
author2 Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Réjou-Méchain, Maxime
Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
dc.subject.eng.fl_str_mv Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
topic Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
description Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.
publishDate 2014
dc.date.issued.fl_str_mv 2014
dc.date.accessioned.fl_str_mv 2020-05-07T13:47:14Z
dc.date.available.fl_str_mv 2020-05-07T13:47:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.inpa.gov.br/handle/1/14893
dc.identifier.doi.none.fl_str_mv 10.5194/bg-11-6827-2014
url https://repositorio.inpa.gov.br/handle/1/14893
identifier_str_mv 10.5194/bg-11-6827-2014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Volume 11, Número 23, Pags. 6827-6840
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Biogeosciences
publisher.none.fl_str_mv Biogeosciences
dc.source.none.fl_str_mv reponame:Repositório Institucional do INPA
instname:Instituto Nacional de Pesquisas da Amazônia (INPA)
instacron:INPA
instname_str Instituto Nacional de Pesquisas da Amazônia (INPA)
instacron_str INPA
institution INPA
reponame_str Repositório Institucional do INPA
collection Repositório Institucional do INPA
bitstream.url.fl_str_mv https://repositorio.inpa.gov.br/bitstream/1/14893/1/artigo-inpa.pdf
https://repositorio.inpa.gov.br/bitstream/1/14893/2/license_rdf
bitstream.checksum.fl_str_mv 80316794f562e30442497bc037a98357
4d2950bda3d176f570a9f8b328dfbbef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)
repository.mail.fl_str_mv
_version_ 1809928879661383680