Crustal magnetic field advection on Mars by ionospheric plasma flow

Detalhes bibliográficos
Autor(a) principal: Isabela de Oliveira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.12.07.13
Resumo: The planet Mars has unique magnetic features among the solar system bodies. Although the planet does not currently have an active dynamo that generates a global magnetic field, like Earth has, there are regions in its crust which are strongly magnetized. Some of these magnetic fields have magnitudes comparable to magnetic fields on Earth. Evidences suggest that the crustal magnetic fields on Mars are remanent signatures from a Martian dynamo that was active in the past. These strongly magnetized regions, above which mini-magnetospheres are formed, are what distinguishes Mars from the other planets of the Solar System. Like at Venus, the interactions between the solar wind and Mars are mostly dominated by the properties of its ionosphere. However, Mars mini-magnetospheres influence the ionospheric interactions, changing ionospheric parameters and disturbing or generating local and global ionospheric currents. In this work, we propose that the crustal magnetic fields of Mars not only interfere in the planets ionosphere, but that also the contrary can happen, i.e., the ionosphere can disturb the crustal magnetic fields. We specifically study whether the ionospheric flow is able to displace the crustal magnetic fields by advection, dragging them in the anti-solar direction, along the day-to-night flow of the ionospheric plasma. In order to identify advection of the magnetic fields on Mars, we perform statistical analyses using data from MAVEN and MGS spacecraft over long periods of time. MAVEN radial magnetic field data of the whole planet are selected for the dawn-side and the dusk-side of Mars and compared to a crustal magnetic field model, for altitude ranges between 200-1000 km. The results show evidences that the magnetic fields are displaced and the cause for the displacement is likely to be advection due to the ionospheric flow. We also use MGS radial magnetic field data to investigate the advection on small regions of the planet and with a higher spatial resolution. We compare day-side data to night-side data at the orbit altitude of 400 km. The displacement of the magnetic fields seems to be correlated to the distance from the magnetic field to the main patch of magnetization in the Southern hemisphere of the planet. In order to have a general idea of the forces involved in the advection of the magnetic fields, we compare the dynamic pressure of the ionospheric plasma flow to the magnetic pressure of the crustal magnetic fields. For this study, we use MAVEN magnetic field and ionospheric data between 200-1000 km and between 04:00-20:00 local times. The results indicate that the advection of the magnetic fields is likely to be more expressive at the terminator regions of the planet, above regions of weak magnetic field background, e.g., in the Northern hemisphere of Mars.
id INPE_0105709c677006dfa42e0b2b3a179539
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2020/08.12.07.13.14-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCrustal magnetic field advection on Mars by ionospheric plasma flowAdvecção do campo magnético crustal em Marte pelo fluxo ionosférico de plasma2020-08-25Ezequiel EcherAdriane Marques de Souza FrancoAlisson Dal LagoFábio Becker GuedesManilo Soares MarquesIsabela de OliveiraInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências do Ambiente Solar-TerrestreINPEBRMars atmosphereplanetary ionospheresplanetary magnetic fieldsremanent magnetizationadvectionatmosfera de Marteionosferas planetáriascampos magnéticos planetáriosmagnetização remanescenteadvecçãoThe planet Mars has unique magnetic features among the solar system bodies. Although the planet does not currently have an active dynamo that generates a global magnetic field, like Earth has, there are regions in its crust which are strongly magnetized. Some of these magnetic fields have magnitudes comparable to magnetic fields on Earth. Evidences suggest that the crustal magnetic fields on Mars are remanent signatures from a Martian dynamo that was active in the past. These strongly magnetized regions, above which mini-magnetospheres are formed, are what distinguishes Mars from the other planets of the Solar System. Like at Venus, the interactions between the solar wind and Mars are mostly dominated by the properties of its ionosphere. However, Mars mini-magnetospheres influence the ionospheric interactions, changing ionospheric parameters and disturbing or generating local and global ionospheric currents. In this work, we propose that the crustal magnetic fields of Mars not only interfere in the planets ionosphere, but that also the contrary can happen, i.e., the ionosphere can disturb the crustal magnetic fields. We specifically study whether the ionospheric flow is able to displace the crustal magnetic fields by advection, dragging them in the anti-solar direction, along the day-to-night flow of the ionospheric plasma. In order to identify advection of the magnetic fields on Mars, we perform statistical analyses using data from MAVEN and MGS spacecraft over long periods of time. MAVEN radial magnetic field data of the whole planet are selected for the dawn-side and the dusk-side of Mars and compared to a crustal magnetic field model, for altitude ranges between 200-1000 km. The results show evidences that the magnetic fields are displaced and the cause for the displacement is likely to be advection due to the ionospheric flow. We also use MGS radial magnetic field data to investigate the advection on small regions of the planet and with a higher spatial resolution. We compare day-side data to night-side data at the orbit altitude of 400 km. The displacement of the magnetic fields seems to be correlated to the distance from the magnetic field to the main patch of magnetization in the Southern hemisphere of the planet. In order to have a general idea of the forces involved in the advection of the magnetic fields, we compare the dynamic pressure of the ionospheric plasma flow to the magnetic pressure of the crustal magnetic fields. For this study, we use MAVEN magnetic field and ionospheric data between 200-1000 km and between 04:00-20:00 local times. The results indicate that the advection of the magnetic fields is likely to be more expressive at the terminator regions of the planet, above regions of weak magnetic field background, e.g., in the Northern hemisphere of Mars.O planeta Marte tem características magnéticas únicas dentre os corpos do sistema solar. Embora o planeta atualmente não tenha um dínamo ativo que gere um campo magnético global, como o da Terra, existem regiões fortemente magnetizadas em sua crosta. Alguns desses campos magnéticos têm magnitudes comparáveis aos campos magnéticos da Terra. Evidências sugerem que os campos magnéticos crustais de Marte são assinaturas remanescentes de um dínamo marciano que esteve ativo no passado. Essas regiões fortemente magnetizadas, acima das quais minimagnetosferas são formadas, são o que distingue Marte dos outros planetas do Sistema Solar. Como em Vênus, as interações entre o vento solar e Marte são predominantemente dominadas pelas propriedades de sua ionosfera. Contudo, minimagnetosferas de Marte influenciam as interações ionosféricas, alterando os parâmetros ionosféricos e perturbando ou gerando correntes ionosféricas locais e globais. Neste trabalho, propomos que os campos magnéticos crustais de Marte não apenas interferem na ionosfera do planeta, mas que também o contrário pode acontecer, ou seja, a ionosfera pode perturbar os campos magnéticos crustais. Estudamos especificamente se o fluxo ionosférico é capaz de deslocar os campos magnéticos da crosta por advecção, arrastando-os na direção anti-solar, ao longo do fluxo diário do plasma ionosférico. Para identificar a advecção dos campos magnéticos de Marte, realizamos análises estatísticas usando os dados das espaçonaves MAVEN e MGS por longos períodos de tempo. Os dados da componente radial do campo magnético da MAVEN de todo o planeta são selecionados para o lado do amanhecer e do crepúsculo de Marte e comparados com um modelo de campo magnético crustal, para faixas de altitude entre 200-1000 km. Os resultados mostram evidências de que os campos magnéticos estão deslocados e a causa do deslocamento provavelmente é a advecção devido ao fluxo ionosférico. Também usamos dados da componente radial do campo magnético da MGS para investigar a advecção em pequenas regiões do planeta e com uma resolução espacial mais alta. Comparamos os dados diurnos com os noturnos na altitude da órbita de 400 km. O deslocamento dos campos magnéticos parece estar correlacionado à distância do campo magnético ao principal bloco de magnetização no hemisfério Sul do planeta. Para ter uma idéia geral das forças envolvidas na advecção dos campos magnéticos, comparamos a pressão dinâmica do fluxo de plasma ionosférico com a pressão magnética dos campos magnéticos crustais. Para este estudo, usamos dados da MAVEN do campo magnético e da ionosfera entre 200-1000 km e entre 04:00-20:00 do horário local. Os resultados indicam que a advecção dos campos magnéticos é provavelmente mais expressiva nas regiões do terminadouro do planeta, acima das regiões de fraco campo magnético de fundo, e.g., no hemisfério Norte de Marte.http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.12.07.13info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:21Zoai:urlib.net:sid.inpe.br/mtc-m21c/2020/08.12.07.13.14-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:22.367Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Crustal magnetic field advection on Mars by ionospheric plasma flow
dc.title.alternative.pt.fl_str_mv Advecção do campo magnético crustal em Marte pelo fluxo ionosférico de plasma
title Crustal magnetic field advection on Mars by ionospheric plasma flow
spellingShingle Crustal magnetic field advection on Mars by ionospheric plasma flow
Isabela de Oliveira
title_short Crustal magnetic field advection on Mars by ionospheric plasma flow
title_full Crustal magnetic field advection on Mars by ionospheric plasma flow
title_fullStr Crustal magnetic field advection on Mars by ionospheric plasma flow
title_full_unstemmed Crustal magnetic field advection on Mars by ionospheric plasma flow
title_sort Crustal magnetic field advection on Mars by ionospheric plasma flow
author Isabela de Oliveira
author_facet Isabela de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Ezequiel Echer
dc.contributor.advisor2.fl_str_mv Adriane Marques de Souza Franco
dc.contributor.referee1.fl_str_mv Alisson Dal Lago
dc.contributor.referee2.fl_str_mv Fábio Becker Guedes
dc.contributor.referee3.fl_str_mv Manilo Soares Marques
dc.contributor.author.fl_str_mv Isabela de Oliveira
contributor_str_mv Ezequiel Echer
Adriane Marques de Souza Franco
Alisson Dal Lago
Fábio Becker Guedes
Manilo Soares Marques
dc.description.abstract.por.fl_txt_mv The planet Mars has unique magnetic features among the solar system bodies. Although the planet does not currently have an active dynamo that generates a global magnetic field, like Earth has, there are regions in its crust which are strongly magnetized. Some of these magnetic fields have magnitudes comparable to magnetic fields on Earth. Evidences suggest that the crustal magnetic fields on Mars are remanent signatures from a Martian dynamo that was active in the past. These strongly magnetized regions, above which mini-magnetospheres are formed, are what distinguishes Mars from the other planets of the Solar System. Like at Venus, the interactions between the solar wind and Mars are mostly dominated by the properties of its ionosphere. However, Mars mini-magnetospheres influence the ionospheric interactions, changing ionospheric parameters and disturbing or generating local and global ionospheric currents. In this work, we propose that the crustal magnetic fields of Mars not only interfere in the planets ionosphere, but that also the contrary can happen, i.e., the ionosphere can disturb the crustal magnetic fields. We specifically study whether the ionospheric flow is able to displace the crustal magnetic fields by advection, dragging them in the anti-solar direction, along the day-to-night flow of the ionospheric plasma. In order to identify advection of the magnetic fields on Mars, we perform statistical analyses using data from MAVEN and MGS spacecraft over long periods of time. MAVEN radial magnetic field data of the whole planet are selected for the dawn-side and the dusk-side of Mars and compared to a crustal magnetic field model, for altitude ranges between 200-1000 km. The results show evidences that the magnetic fields are displaced and the cause for the displacement is likely to be advection due to the ionospheric flow. We also use MGS radial magnetic field data to investigate the advection on small regions of the planet and with a higher spatial resolution. We compare day-side data to night-side data at the orbit altitude of 400 km. The displacement of the magnetic fields seems to be correlated to the distance from the magnetic field to the main patch of magnetization in the Southern hemisphere of the planet. In order to have a general idea of the forces involved in the advection of the magnetic fields, we compare the dynamic pressure of the ionospheric plasma flow to the magnetic pressure of the crustal magnetic fields. For this study, we use MAVEN magnetic field and ionospheric data between 200-1000 km and between 04:00-20:00 local times. The results indicate that the advection of the magnetic fields is likely to be more expressive at the terminator regions of the planet, above regions of weak magnetic field background, e.g., in the Northern hemisphere of Mars.
O planeta Marte tem características magnéticas únicas dentre os corpos do sistema solar. Embora o planeta atualmente não tenha um dínamo ativo que gere um campo magnético global, como o da Terra, existem regiões fortemente magnetizadas em sua crosta. Alguns desses campos magnéticos têm magnitudes comparáveis aos campos magnéticos da Terra. Evidências sugerem que os campos magnéticos crustais de Marte são assinaturas remanescentes de um dínamo marciano que esteve ativo no passado. Essas regiões fortemente magnetizadas, acima das quais minimagnetosferas são formadas, são o que distingue Marte dos outros planetas do Sistema Solar. Como em Vênus, as interações entre o vento solar e Marte são predominantemente dominadas pelas propriedades de sua ionosfera. Contudo, minimagnetosferas de Marte influenciam as interações ionosféricas, alterando os parâmetros ionosféricos e perturbando ou gerando correntes ionosféricas locais e globais. Neste trabalho, propomos que os campos magnéticos crustais de Marte não apenas interferem na ionosfera do planeta, mas que também o contrário pode acontecer, ou seja, a ionosfera pode perturbar os campos magnéticos crustais. Estudamos especificamente se o fluxo ionosférico é capaz de deslocar os campos magnéticos da crosta por advecção, arrastando-os na direção anti-solar, ao longo do fluxo diário do plasma ionosférico. Para identificar a advecção dos campos magnéticos de Marte, realizamos análises estatísticas usando os dados das espaçonaves MAVEN e MGS por longos períodos de tempo. Os dados da componente radial do campo magnético da MAVEN de todo o planeta são selecionados para o lado do amanhecer e do crepúsculo de Marte e comparados com um modelo de campo magnético crustal, para faixas de altitude entre 200-1000 km. Os resultados mostram evidências de que os campos magnéticos estão deslocados e a causa do deslocamento provavelmente é a advecção devido ao fluxo ionosférico. Também usamos dados da componente radial do campo magnético da MGS para investigar a advecção em pequenas regiões do planeta e com uma resolução espacial mais alta. Comparamos os dados diurnos com os noturnos na altitude da órbita de 400 km. O deslocamento dos campos magnéticos parece estar correlacionado à distância do campo magnético ao principal bloco de magnetização no hemisfério Sul do planeta. Para ter uma idéia geral das forças envolvidas na advecção dos campos magnéticos, comparamos a pressão dinâmica do fluxo de plasma ionosférico com a pressão magnética dos campos magnéticos crustais. Para este estudo, usamos dados da MAVEN do campo magnético e da ionosfera entre 200-1000 km e entre 04:00-20:00 do horário local. Os resultados indicam que a advecção dos campos magnéticos é provavelmente mais expressiva nas regiões do terminadouro do planeta, acima das regiões de fraco campo magnético de fundo, e.g., no hemisfério Norte de Marte.
description The planet Mars has unique magnetic features among the solar system bodies. Although the planet does not currently have an active dynamo that generates a global magnetic field, like Earth has, there are regions in its crust which are strongly magnetized. Some of these magnetic fields have magnitudes comparable to magnetic fields on Earth. Evidences suggest that the crustal magnetic fields on Mars are remanent signatures from a Martian dynamo that was active in the past. These strongly magnetized regions, above which mini-magnetospheres are formed, are what distinguishes Mars from the other planets of the Solar System. Like at Venus, the interactions between the solar wind and Mars are mostly dominated by the properties of its ionosphere. However, Mars mini-magnetospheres influence the ionospheric interactions, changing ionospheric parameters and disturbing or generating local and global ionospheric currents. In this work, we propose that the crustal magnetic fields of Mars not only interfere in the planets ionosphere, but that also the contrary can happen, i.e., the ionosphere can disturb the crustal magnetic fields. We specifically study whether the ionospheric flow is able to displace the crustal magnetic fields by advection, dragging them in the anti-solar direction, along the day-to-night flow of the ionospheric plasma. In order to identify advection of the magnetic fields on Mars, we perform statistical analyses using data from MAVEN and MGS spacecraft over long periods of time. MAVEN radial magnetic field data of the whole planet are selected for the dawn-side and the dusk-side of Mars and compared to a crustal magnetic field model, for altitude ranges between 200-1000 km. The results show evidences that the magnetic fields are displaced and the cause for the displacement is likely to be advection due to the ionospheric flow. We also use MGS radial magnetic field data to investigate the advection on small regions of the planet and with a higher spatial resolution. We compare day-side data to night-side data at the orbit altitude of 400 km. The displacement of the magnetic fields seems to be correlated to the distance from the magnetic field to the main patch of magnetization in the Southern hemisphere of the planet. In order to have a general idea of the forces involved in the advection of the magnetic fields, we compare the dynamic pressure of the ionospheric plasma flow to the magnetic pressure of the crustal magnetic fields. For this study, we use MAVEN magnetic field and ionospheric data between 200-1000 km and between 04:00-20:00 local times. The results indicate that the advection of the magnetic fields is likely to be more expressive at the terminator regions of the planet, above regions of weak magnetic field background, e.g., in the Northern hemisphere of Mars.
publishDate 2020
dc.date.issued.fl_str_mv 2020-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.12.07.13
url http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.12.07.13
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências do Ambiente Solar-Terrestre
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências do Ambiente Solar-Terrestre
contributor_advisor1_txtF_mv Ezequiel Echer
_version_ 1706809364424163328