Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do INPE |
Texto Completo: | http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.21.08.24 |
Resumo: | The use of Remote Sensing for successional stages and tree species mapping in (sub)tropical forests is a challenging task, due to high floristic and spectral diversity in these environments. Fortunately, in the latest decades, mankind has witnessed a remarkable advancement of space technologies targeted to monitoring forest resources, such as the availability of high spatial and spectral data and advanced classification methods. Besides providing high spatial and spectral resolution images, unmanned aerial vehicle (UAV)- hyperspectral cameras operating in frame format enable to produce tridimensional (3D) hyperspectral point clouds. This study investigated two major topics concerning the successional stages and tree species mapping in a subtropical forest environment in Southern Brazil: a) the use of UAVacquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for the classification of successional stages, comparing these data with classifications using multispectral images acquired by the WorldView-2 (WV- 2) satellite and Light Detection and Ranging (LiDAR) data and; b) the use of UAV-acquired hyperspectral images and UAV-PPC for individual tree crown (ITC) delineation and semiautomatic classification of 16 major tree species in two subtropical forest fragments. For both goals, different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral or WV- 2 data (e.g., texture, vegetation indices-VIs, and minimum noise fraction- MNF) were tested. To classify the successional forest stages, an objectbased image analysis (OBIA) was conducted using two conventional machine learning classifiers, support vector machine (SVM) and random forest (RF). For tree species classification, two conventional machine learning, SVM and RF, and one deep learning classifier, the convolutional neural network (CNN), were tested in a pixel-based approach. Besides these classifiers, a new SVM approach focused on an imbalanced sample set was also tested, the weighted SVM (wSVM). For ITC delineation, three methods were tested: two using hyperspectral bands, the multiresolution region growing (MRG) and the itcIMG, and the other one using the PPC, named multiclass cut followed by recursive cut (MCRC). The best segmentation result was used in two classification approaches tested using the conventional machine learning methods: OBIA and the majority vote (MV) rule. The results showed that the successional forest stages were successfully classified with accuracies over 80% when the WV-2 data were applied, and over 90% with the UAVhyperspectral data. The best result reached an overall accuracy (OA) of 99.28% using the hyperspectral data associated with the CHM and RF classifier. The CHM and features derived from WV-2 and hyperspectral data increased between 5% and 13% the classification accuracies. Regarding the tree species classification, the CNN outperformed the RF and SVM for both areas, with an OA of 84.4% in Area 1, and 74.95% in Area 2, using only the VNIR bands. This method was 22% to 26% more accurate than the SVM and RF when considering the VNIR dataset. The inclusion of PPC features and the CHM provided a great increase in tree species classification results when machine learning methods were applied (SVM, wSVM and RF), between 13% and 17% depending on the selected classifier and the study area. However, a decrease was observed when these features were included in the CNN classification. The OBIA approach did not increase the OA for the SVM classifier, while a slightly increase was observed for the RF algorithm in comparison with the RF using the pixel-based classification. The MV rule approach, on the other hand, brought a marked increase in accuracy for both study areas (5% for Area 1 and 11% for Area 2). When using PPC features and the CHM, associated with the MV approach, the machine learning classifiers reached accuracies similar to the ones achieved by the CNN (82.52% for Area 1 and 75.45% for Area 2). The wSVM provided a slightly increase in accuracy not only for some lesser represented classes, but also for some major classes in Area 2. None of the three ITC delineation methods reached a suitable result for all reference ITCs. The MRG method tended to oversegment most ITCs, while the itcIMG and MCRC tended to undersegment or missed some suppressed ITCs. With the inclusion of the CHM in the MRG segmentation and merging homogenous segments with the Jeffries Matusita (JM) distance, visually and according to supervised evaluation metrics, a better delineation was reached. The results found in this study are relevant to favor the conservation of the Atlantic Rain Forest, a severely threatened biome, optimizing the mapping and monitoring of its forest remnants, and also to subsidize actions within the scope of the rural environmental register (Cadastro Ambiental Rural- CAR) in Brazil. In addition, the methodology can be used to map specific tree species, such as the endangered ones, in this case Araucaria angustifolia and Cedrela fissilis. |
id |
INPE_48870d1b09e494ed05e578fcc3567677 |
---|---|
oai_identifier_str |
oai:urlib.net:sid.inpe.br/mtc-m21c/2019/11.21.08.24.37-0 |
network_acronym_str |
INPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INPE |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithmsMapeamento de estádios sucessionais da vegetação e espécies arbóreas em áreas subtropicais integrando núvem de pontos fotogramétrica e dados hiperespectrais baseados em VANT: comparação entre algoritmos de aprendizado de máquina e aprendizado profundo2019-12-18Cláudia Maria de AlmeidaMarcos Benedito SchimalskiHermann Johann Heinrich KuxCamile SotheInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Sensoriamento RemotoINPEBRtropical biodiversityimaging spectroscopyphotogrammetryWorldView-2individual tree crown delineationbiodiversidade tropicalespectroscopia de imageamentofotogrametriadelineamento de árvores individuaisThe use of Remote Sensing for successional stages and tree species mapping in (sub)tropical forests is a challenging task, due to high floristic and spectral diversity in these environments. Fortunately, in the latest decades, mankind has witnessed a remarkable advancement of space technologies targeted to monitoring forest resources, such as the availability of high spatial and spectral data and advanced classification methods. Besides providing high spatial and spectral resolution images, unmanned aerial vehicle (UAV)- hyperspectral cameras operating in frame format enable to produce tridimensional (3D) hyperspectral point clouds. This study investigated two major topics concerning the successional stages and tree species mapping in a subtropical forest environment in Southern Brazil: a) the use of UAVacquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for the classification of successional stages, comparing these data with classifications using multispectral images acquired by the WorldView-2 (WV- 2) satellite and Light Detection and Ranging (LiDAR) data and; b) the use of UAV-acquired hyperspectral images and UAV-PPC for individual tree crown (ITC) delineation and semiautomatic classification of 16 major tree species in two subtropical forest fragments. For both goals, different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral or WV- 2 data (e.g., texture, vegetation indices-VIs, and minimum noise fraction- MNF) were tested. To classify the successional forest stages, an objectbased image analysis (OBIA) was conducted using two conventional machine learning classifiers, support vector machine (SVM) and random forest (RF). For tree species classification, two conventional machine learning, SVM and RF, and one deep learning classifier, the convolutional neural network (CNN), were tested in a pixel-based approach. Besides these classifiers, a new SVM approach focused on an imbalanced sample set was also tested, the weighted SVM (wSVM). For ITC delineation, three methods were tested: two using hyperspectral bands, the multiresolution region growing (MRG) and the itcIMG, and the other one using the PPC, named multiclass cut followed by recursive cut (MCRC). The best segmentation result was used in two classification approaches tested using the conventional machine learning methods: OBIA and the majority vote (MV) rule. The results showed that the successional forest stages were successfully classified with accuracies over 80% when the WV-2 data were applied, and over 90% with the UAVhyperspectral data. The best result reached an overall accuracy (OA) of 99.28% using the hyperspectral data associated with the CHM and RF classifier. The CHM and features derived from WV-2 and hyperspectral data increased between 5% and 13% the classification accuracies. Regarding the tree species classification, the CNN outperformed the RF and SVM for both areas, with an OA of 84.4% in Area 1, and 74.95% in Area 2, using only the VNIR bands. This method was 22% to 26% more accurate than the SVM and RF when considering the VNIR dataset. The inclusion of PPC features and the CHM provided a great increase in tree species classification results when machine learning methods were applied (SVM, wSVM and RF), between 13% and 17% depending on the selected classifier and the study area. However, a decrease was observed when these features were included in the CNN classification. The OBIA approach did not increase the OA for the SVM classifier, while a slightly increase was observed for the RF algorithm in comparison with the RF using the pixel-based classification. The MV rule approach, on the other hand, brought a marked increase in accuracy for both study areas (5% for Area 1 and 11% for Area 2). When using PPC features and the CHM, associated with the MV approach, the machine learning classifiers reached accuracies similar to the ones achieved by the CNN (82.52% for Area 1 and 75.45% for Area 2). The wSVM provided a slightly increase in accuracy not only for some lesser represented classes, but also for some major classes in Area 2. None of the three ITC delineation methods reached a suitable result for all reference ITCs. The MRG method tended to oversegment most ITCs, while the itcIMG and MCRC tended to undersegment or missed some suppressed ITCs. With the inclusion of the CHM in the MRG segmentation and merging homogenous segments with the Jeffries Matusita (JM) distance, visually and according to supervised evaluation metrics, a better delineation was reached. The results found in this study are relevant to favor the conservation of the Atlantic Rain Forest, a severely threatened biome, optimizing the mapping and monitoring of its forest remnants, and also to subsidize actions within the scope of the rural environmental register (Cadastro Ambiental Rural- CAR) in Brazil. In addition, the methodology can be used to map specific tree species, such as the endangered ones, in this case Araucaria angustifolia and Cedrela fissilis.O uso de Sensoriamento Remoto para o mapeamento de estádios sucessionais e espécies arbóreas em florestas (sub)tropicais é uma tarefa desafiadora, devido à alta diversidade florística e espectral desses ambientes. Felizmente, nas últimas décadas, a humanidade testemunhou um notável avanço das tecnologias espaciais voltadas ao monitoramento dos recursos florestais, como a disponibilidade de dados com alta resolução espacial e espectral e métodos de classificação sofisticados. Além da aquisição de imagens de alta resolução espacial e espectral, câmeras hiperespectrais a bordo de veículos aéreos não tripulados (VANT) operando em formato de quadro permitem produzir nuvens de pontos hiperespectrais tridimensionais (3D). Este estudo investigou dois grandes tópicos referentes ao mapeamento de estádios sucessionais e de espécies arbóreas em um ambiente de floresta subtropical do sul do Brasil: a) o uso de imagens hiperespectrais adquiridas por VANT e sua nuvem de pontos fotogramétrica (photogrammetric point cloud - PPC) para a classificação de três estádios sucessionais da vegetação, comparando esses dados com classificações usando imagens multiespectrais adquiridas pelo satélite WorldView-2 (WV-2) associados a dados Light Detection and Ranging (LiDAR); e b) o uso de imagens hiperespectrais adquiridas por VANT e informações da PPC para o delineamento de copas de árvore individual (individual tree crown - ITC) e para a classificação semiautomática de 16 espécies arbóreas dominantes em dois fragmentos de floresta subtropical. Para ambos os objetivos, foram testados diferentes conjuntos de dados contendo bandas do espectro visível/infravermelho próximo (visible/near infrared - VNIR), atributos derivados da PPC, modelo de altura de dossel (canopy height model - CHM) e outros atributos extraídos de dados hiperespectrais ou WV- 2 (e.g., textura, índices de vegetação-VIs, e fração de ruído mínima-MNF). Para classificar os estádios sucessionais, foi conduzida uma análise de imagem baseada em objetos (object-based image analysis - OBIA) usando dois classificadores de aprendizado de máquina, máquinas de vetor de suporte (support vector machine - SVM) e floresta aleatória (random forest - RF). Para a classificação de espécies arbóreas, dois algoritmos de aprendizado de máquina convencionais, SVM e RF, e um classificador de aprendizagem profunda, rede neural convolucional (convolutional neural network - CNN), foram testados em uma abordagem baseada em pixels. Além destes, também foi testada uma nova abordagem SVM para lidar com o conjunto de amostras desbalanceadas, o SVM ponderado (weighted SVM - wSVM). Para o delineamento de ITC, três métodos foram testados: dois utilizando bandas hiperespectrais, o algoritmo multirresolução por crescimento de regiões (multiresolution region growing - MRG) e o itcIMG, e o terceiro método utilizando a nuvem de pontos PPC, denominado corte multiclasse seguido de corte recursivo (multiclass cut followed by recursive cut - MCRC). O melhor resultado de segmentação foi usado em duas abordagens de classificação testadas com os métodos convencionais de aprendizado de máquina: OBIA e regra de voto majoritário (majority vote - MV). Os resultados mostraram que a classificação dos estádios sucessionais da vegetação, em geral, foi bem-sucedida, alcançando precisões acima de 80% quando empregados os dados do WV-2, e acima de 90% quando usados os dados hiperespectrais. O melhor resultado alcançou uma precisão global (overall accuracy - OA) de 99,28% usando os dados hiperespectrais associados ao CHM e ao classificador RF. O CHM e os atributos derivados dos dados do WV-2 e hiperespectrais aumentaram entre 5% e 13% a precisão da classificação. Em relação à classificação das espécies arbóreas, a CNN superou os classificadores RF e SVM em ambas as áreas, com uma OA de 84,4% na Área 1 e 74,95% na Área 2, utilizando apenas as bandas espectrais VNIR. Este método foi 22% a 26% mais preciso do que SVM e RF quando considerado apenas o conjunto de dados VNIR. A inclusão de atributos da PPC e do CHM levou a um significativo aumento na precisão da classificação de espécies arbóreas quando métodos de aprendizado de máquina foram aplicados (SVM, wSVM e RF), entre 13% e 17% dependendo do classificador e da área de estudo. No entanto, uma diminuição na OA foi observada quando esses atributos foram incluídos na classificação da CNN. A abordagem OBIA não aumentou a OA para o SVM, enquanto um pequeno aumento foi observado no algoritmo RF em comparação com o RF usando a classificação baseada em pixels. A abordagem MV, por outro lado, trouxe um aumento acentuado na precisão para ambas as áreas de estudo (5% para a Área 1 e 11% para a Área 2). Ao usar atributos derivados da PPC e o CHM, associadas à abordagem MV, os classificadores de aprendizado de máquina alcançaram precisões similares à CNN (82,52% para a Área 1 e 75,45% para a Área 2). O wSVM aumentou a precisão, não apenas de classes com menos amostras, mas também de algumas classes majoritárias na Área 2. Nenhum dos três métodos de delineamento de ITC alcançou um resultado adequado para todas as ITCs de referência. O método MRG tendeu a superssegmentar a maioria das ITCs, enquanto o itcIMG e o MCRC tenderam à sobressegmentação, ou então, não segmentaram algumas ITCs suprimidas sob o dossel. Com a inclusão do CHM na segmentação usando o MRG, e a fusão de segmentos homogêneos usando a distância Jeffries Matusita (JM), tanto visualmente quanto de acordo com métricas de avaliação, conseguiu-se um melhor delineamento das copas das árvores. Os resultados encontrados nesse estudo são relevantes para incentivar a conservação da Mata Atlântica, um bioma severamente ameaçado, otimizando o mapeamento e monitoramento de seus remanescentes florestais, e também para subsidiar ações no âmbito do Cadastro Ambiental Rural (CAR) no Brasil. Além disso, a metodologia pode ser usada para mapear espécies arbóreas específicas, como as ameaçadas de extinção, neste caso, Araucaria angustifolia e Cedrela fissilis.http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.21.08.24info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:10Zoai:urlib.net:sid.inpe.br/mtc-m21c/2019/11.21.08.24.37-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:10.747Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false |
dc.title.en.fl_str_mv |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
dc.title.alternative.pt.fl_str_mv |
Mapeamento de estádios sucessionais da vegetação e espécies arbóreas em áreas subtropicais integrando núvem de pontos fotogramétrica e dados hiperespectrais baseados em VANT: comparação entre algoritmos de aprendizado de máquina e aprendizado profundo |
title |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
spellingShingle |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms Camile Sothe |
title_short |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
title_full |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
title_fullStr |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
title_full_unstemmed |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
title_sort |
Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: comparison of machine and deep learning algorithms |
author |
Camile Sothe |
author_facet |
Camile Sothe |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Cláudia Maria de Almeida |
dc.contributor.advisor2.fl_str_mv |
Marcos Benedito Schimalski |
dc.contributor.referee1.fl_str_mv |
Hermann Johann Heinrich Kux |
dc.contributor.author.fl_str_mv |
Camile Sothe |
contributor_str_mv |
Cláudia Maria de Almeida Marcos Benedito Schimalski Hermann Johann Heinrich Kux |
dc.description.abstract.por.fl_txt_mv |
The use of Remote Sensing for successional stages and tree species mapping in (sub)tropical forests is a challenging task, due to high floristic and spectral diversity in these environments. Fortunately, in the latest decades, mankind has witnessed a remarkable advancement of space technologies targeted to monitoring forest resources, such as the availability of high spatial and spectral data and advanced classification methods. Besides providing high spatial and spectral resolution images, unmanned aerial vehicle (UAV)- hyperspectral cameras operating in frame format enable to produce tridimensional (3D) hyperspectral point clouds. This study investigated two major topics concerning the successional stages and tree species mapping in a subtropical forest environment in Southern Brazil: a) the use of UAVacquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for the classification of successional stages, comparing these data with classifications using multispectral images acquired by the WorldView-2 (WV- 2) satellite and Light Detection and Ranging (LiDAR) data and; b) the use of UAV-acquired hyperspectral images and UAV-PPC for individual tree crown (ITC) delineation and semiautomatic classification of 16 major tree species in two subtropical forest fragments. For both goals, different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral or WV- 2 data (e.g., texture, vegetation indices-VIs, and minimum noise fraction- MNF) were tested. To classify the successional forest stages, an objectbased image analysis (OBIA) was conducted using two conventional machine learning classifiers, support vector machine (SVM) and random forest (RF). For tree species classification, two conventional machine learning, SVM and RF, and one deep learning classifier, the convolutional neural network (CNN), were tested in a pixel-based approach. Besides these classifiers, a new SVM approach focused on an imbalanced sample set was also tested, the weighted SVM (wSVM). For ITC delineation, three methods were tested: two using hyperspectral bands, the multiresolution region growing (MRG) and the itcIMG, and the other one using the PPC, named multiclass cut followed by recursive cut (MCRC). The best segmentation result was used in two classification approaches tested using the conventional machine learning methods: OBIA and the majority vote (MV) rule. The results showed that the successional forest stages were successfully classified with accuracies over 80% when the WV-2 data were applied, and over 90% with the UAVhyperspectral data. The best result reached an overall accuracy (OA) of 99.28% using the hyperspectral data associated with the CHM and RF classifier. The CHM and features derived from WV-2 and hyperspectral data increased between 5% and 13% the classification accuracies. Regarding the tree species classification, the CNN outperformed the RF and SVM for both areas, with an OA of 84.4% in Area 1, and 74.95% in Area 2, using only the VNIR bands. This method was 22% to 26% more accurate than the SVM and RF when considering the VNIR dataset. The inclusion of PPC features and the CHM provided a great increase in tree species classification results when machine learning methods were applied (SVM, wSVM and RF), between 13% and 17% depending on the selected classifier and the study area. However, a decrease was observed when these features were included in the CNN classification. The OBIA approach did not increase the OA for the SVM classifier, while a slightly increase was observed for the RF algorithm in comparison with the RF using the pixel-based classification. The MV rule approach, on the other hand, brought a marked increase in accuracy for both study areas (5% for Area 1 and 11% for Area 2). When using PPC features and the CHM, associated with the MV approach, the machine learning classifiers reached accuracies similar to the ones achieved by the CNN (82.52% for Area 1 and 75.45% for Area 2). The wSVM provided a slightly increase in accuracy not only for some lesser represented classes, but also for some major classes in Area 2. None of the three ITC delineation methods reached a suitable result for all reference ITCs. The MRG method tended to oversegment most ITCs, while the itcIMG and MCRC tended to undersegment or missed some suppressed ITCs. With the inclusion of the CHM in the MRG segmentation and merging homogenous segments with the Jeffries Matusita (JM) distance, visually and according to supervised evaluation metrics, a better delineation was reached. The results found in this study are relevant to favor the conservation of the Atlantic Rain Forest, a severely threatened biome, optimizing the mapping and monitoring of its forest remnants, and also to subsidize actions within the scope of the rural environmental register (Cadastro Ambiental Rural- CAR) in Brazil. In addition, the methodology can be used to map specific tree species, such as the endangered ones, in this case Araucaria angustifolia and Cedrela fissilis. O uso de Sensoriamento Remoto para o mapeamento de estádios sucessionais e espécies arbóreas em florestas (sub)tropicais é uma tarefa desafiadora, devido à alta diversidade florística e espectral desses ambientes. Felizmente, nas últimas décadas, a humanidade testemunhou um notável avanço das tecnologias espaciais voltadas ao monitoramento dos recursos florestais, como a disponibilidade de dados com alta resolução espacial e espectral e métodos de classificação sofisticados. Além da aquisição de imagens de alta resolução espacial e espectral, câmeras hiperespectrais a bordo de veículos aéreos não tripulados (VANT) operando em formato de quadro permitem produzir nuvens de pontos hiperespectrais tridimensionais (3D). Este estudo investigou dois grandes tópicos referentes ao mapeamento de estádios sucessionais e de espécies arbóreas em um ambiente de floresta subtropical do sul do Brasil: a) o uso de imagens hiperespectrais adquiridas por VANT e sua nuvem de pontos fotogramétrica (photogrammetric point cloud - PPC) para a classificação de três estádios sucessionais da vegetação, comparando esses dados com classificações usando imagens multiespectrais adquiridas pelo satélite WorldView-2 (WV-2) associados a dados Light Detection and Ranging (LiDAR); e b) o uso de imagens hiperespectrais adquiridas por VANT e informações da PPC para o delineamento de copas de árvore individual (individual tree crown - ITC) e para a classificação semiautomática de 16 espécies arbóreas dominantes em dois fragmentos de floresta subtropical. Para ambos os objetivos, foram testados diferentes conjuntos de dados contendo bandas do espectro visível/infravermelho próximo (visible/near infrared - VNIR), atributos derivados da PPC, modelo de altura de dossel (canopy height model - CHM) e outros atributos extraídos de dados hiperespectrais ou WV- 2 (e.g., textura, índices de vegetação-VIs, e fração de ruído mínima-MNF). Para classificar os estádios sucessionais, foi conduzida uma análise de imagem baseada em objetos (object-based image analysis - OBIA) usando dois classificadores de aprendizado de máquina, máquinas de vetor de suporte (support vector machine - SVM) e floresta aleatória (random forest - RF). Para a classificação de espécies arbóreas, dois algoritmos de aprendizado de máquina convencionais, SVM e RF, e um classificador de aprendizagem profunda, rede neural convolucional (convolutional neural network - CNN), foram testados em uma abordagem baseada em pixels. Além destes, também foi testada uma nova abordagem SVM para lidar com o conjunto de amostras desbalanceadas, o SVM ponderado (weighted SVM - wSVM). Para o delineamento de ITC, três métodos foram testados: dois utilizando bandas hiperespectrais, o algoritmo multirresolução por crescimento de regiões (multiresolution region growing - MRG) e o itcIMG, e o terceiro método utilizando a nuvem de pontos PPC, denominado corte multiclasse seguido de corte recursivo (multiclass cut followed by recursive cut - MCRC). O melhor resultado de segmentação foi usado em duas abordagens de classificação testadas com os métodos convencionais de aprendizado de máquina: OBIA e regra de voto majoritário (majority vote - MV). Os resultados mostraram que a classificação dos estádios sucessionais da vegetação, em geral, foi bem-sucedida, alcançando precisões acima de 80% quando empregados os dados do WV-2, e acima de 90% quando usados os dados hiperespectrais. O melhor resultado alcançou uma precisão global (overall accuracy - OA) de 99,28% usando os dados hiperespectrais associados ao CHM e ao classificador RF. O CHM e os atributos derivados dos dados do WV-2 e hiperespectrais aumentaram entre 5% e 13% a precisão da classificação. Em relação à classificação das espécies arbóreas, a CNN superou os classificadores RF e SVM em ambas as áreas, com uma OA de 84,4% na Área 1 e 74,95% na Área 2, utilizando apenas as bandas espectrais VNIR. Este método foi 22% a 26% mais preciso do que SVM e RF quando considerado apenas o conjunto de dados VNIR. A inclusão de atributos da PPC e do CHM levou a um significativo aumento na precisão da classificação de espécies arbóreas quando métodos de aprendizado de máquina foram aplicados (SVM, wSVM e RF), entre 13% e 17% dependendo do classificador e da área de estudo. No entanto, uma diminuição na OA foi observada quando esses atributos foram incluídos na classificação da CNN. A abordagem OBIA não aumentou a OA para o SVM, enquanto um pequeno aumento foi observado no algoritmo RF em comparação com o RF usando a classificação baseada em pixels. A abordagem MV, por outro lado, trouxe um aumento acentuado na precisão para ambas as áreas de estudo (5% para a Área 1 e 11% para a Área 2). Ao usar atributos derivados da PPC e o CHM, associadas à abordagem MV, os classificadores de aprendizado de máquina alcançaram precisões similares à CNN (82,52% para a Área 1 e 75,45% para a Área 2). O wSVM aumentou a precisão, não apenas de classes com menos amostras, mas também de algumas classes majoritárias na Área 2. Nenhum dos três métodos de delineamento de ITC alcançou um resultado adequado para todas as ITCs de referência. O método MRG tendeu a superssegmentar a maioria das ITCs, enquanto o itcIMG e o MCRC tenderam à sobressegmentação, ou então, não segmentaram algumas ITCs suprimidas sob o dossel. Com a inclusão do CHM na segmentação usando o MRG, e a fusão de segmentos homogêneos usando a distância Jeffries Matusita (JM), tanto visualmente quanto de acordo com métricas de avaliação, conseguiu-se um melhor delineamento das copas das árvores. Os resultados encontrados nesse estudo são relevantes para incentivar a conservação da Mata Atlântica, um bioma severamente ameaçado, otimizando o mapeamento e monitoramento de seus remanescentes florestais, e também para subsidiar ações no âmbito do Cadastro Ambiental Rural (CAR) no Brasil. Além disso, a metodologia pode ser usada para mapear espécies arbóreas específicas, como as ameaçadas de extinção, neste caso, Araucaria angustifolia e Cedrela fissilis. |
description |
The use of Remote Sensing for successional stages and tree species mapping in (sub)tropical forests is a challenging task, due to high floristic and spectral diversity in these environments. Fortunately, in the latest decades, mankind has witnessed a remarkable advancement of space technologies targeted to monitoring forest resources, such as the availability of high spatial and spectral data and advanced classification methods. Besides providing high spatial and spectral resolution images, unmanned aerial vehicle (UAV)- hyperspectral cameras operating in frame format enable to produce tridimensional (3D) hyperspectral point clouds. This study investigated two major topics concerning the successional stages and tree species mapping in a subtropical forest environment in Southern Brazil: a) the use of UAVacquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for the classification of successional stages, comparing these data with classifications using multispectral images acquired by the WorldView-2 (WV- 2) satellite and Light Detection and Ranging (LiDAR) data and; b) the use of UAV-acquired hyperspectral images and UAV-PPC for individual tree crown (ITC) delineation and semiautomatic classification of 16 major tree species in two subtropical forest fragments. For both goals, different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral or WV- 2 data (e.g., texture, vegetation indices-VIs, and minimum noise fraction- MNF) were tested. To classify the successional forest stages, an objectbased image analysis (OBIA) was conducted using two conventional machine learning classifiers, support vector machine (SVM) and random forest (RF). For tree species classification, two conventional machine learning, SVM and RF, and one deep learning classifier, the convolutional neural network (CNN), were tested in a pixel-based approach. Besides these classifiers, a new SVM approach focused on an imbalanced sample set was also tested, the weighted SVM (wSVM). For ITC delineation, three methods were tested: two using hyperspectral bands, the multiresolution region growing (MRG) and the itcIMG, and the other one using the PPC, named multiclass cut followed by recursive cut (MCRC). The best segmentation result was used in two classification approaches tested using the conventional machine learning methods: OBIA and the majority vote (MV) rule. The results showed that the successional forest stages were successfully classified with accuracies over 80% when the WV-2 data were applied, and over 90% with the UAVhyperspectral data. The best result reached an overall accuracy (OA) of 99.28% using the hyperspectral data associated with the CHM and RF classifier. The CHM and features derived from WV-2 and hyperspectral data increased between 5% and 13% the classification accuracies. Regarding the tree species classification, the CNN outperformed the RF and SVM for both areas, with an OA of 84.4% in Area 1, and 74.95% in Area 2, using only the VNIR bands. This method was 22% to 26% more accurate than the SVM and RF when considering the VNIR dataset. The inclusion of PPC features and the CHM provided a great increase in tree species classification results when machine learning methods were applied (SVM, wSVM and RF), between 13% and 17% depending on the selected classifier and the study area. However, a decrease was observed when these features were included in the CNN classification. The OBIA approach did not increase the OA for the SVM classifier, while a slightly increase was observed for the RF algorithm in comparison with the RF using the pixel-based classification. The MV rule approach, on the other hand, brought a marked increase in accuracy for both study areas (5% for Area 1 and 11% for Area 2). When using PPC features and the CHM, associated with the MV approach, the machine learning classifiers reached accuracies similar to the ones achieved by the CNN (82.52% for Area 1 and 75.45% for Area 2). The wSVM provided a slightly increase in accuracy not only for some lesser represented classes, but also for some major classes in Area 2. None of the three ITC delineation methods reached a suitable result for all reference ITCs. The MRG method tended to oversegment most ITCs, while the itcIMG and MCRC tended to undersegment or missed some suppressed ITCs. With the inclusion of the CHM in the MRG segmentation and merging homogenous segments with the Jeffries Matusita (JM) distance, visually and according to supervised evaluation metrics, a better delineation was reached. The results found in this study are relevant to favor the conservation of the Atlantic Rain Forest, a severely threatened biome, optimizing the mapping and monitoring of its forest remnants, and also to subsidize actions within the scope of the rural environmental register (Cadastro Ambiental Rural- CAR) in Brazil. In addition, the methodology can be used to map specific tree species, such as the endangered ones, in this case Araucaria angustifolia and Cedrela fissilis. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-12-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.21.08.24 |
url |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.21.08.24 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação do INPE em Sensoriamento Remoto |
dc.publisher.initials.fl_str_mv |
INPE |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais (INPE) instacron:INPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INPE |
collection |
Biblioteca Digital de Teses e Dissertações do INPE |
instname_str |
Instituto Nacional de Pesquisas Espaciais (INPE) |
instacron_str |
INPE |
institution |
INPE |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE) |
repository.mail.fl_str_mv |
|
publisher_program_txtF_mv |
Programa de Pós-Graduação do INPE em Sensoriamento Remoto |
contributor_advisor1_txtF_mv |
Cláudia Maria de Almeida |
_version_ |
1706809363240321024 |