Using optical water types for satellite monitoring of brazilian inland waters

Detalhes bibliográficos
Autor(a) principal: Edson Filisbino Freire da Silva
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m21c/2020/03.03.16.25
Resumo: One of the key issues of monitoring inland water quality is spatial-temporal sampling because water quality can rapidly change due to natural and anthropogenic influence. Remote sensing of inland waters is a reliable tool for monitoring water quality in large areas and time-series. However, the traditional method of calibrating bio-optical algorithms for limnological parameters (e.g., Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and Colored Dissolved Organic Matter (CDOM)) is limited to bio-optical characteristics of the study sites used for algorithm calibration. Consequently, bio-optical algorithms are not suitable for monitoring inland waters on a macro-scale level. On the other hand, monitoring Optical Water Types (OWT) has shown a macro-scale application, while those OWTs also represent changes in Chl-a, TSM, and CDOM concentrations. Thus, monitoring Brazilian OWTs could be a useful tool for water management on a wide scale. The objective of this study is to create a method for monitoring the water quality of Brazilian inland waters using OWTs. The study is described in three chapters; the chapter 3 assesses the uncertainties related to the merging of spectra measurements obtained under different protocols of computing remote sensing reflectance (Rrs); the chapter 4 describes the identification of Brazilian OWTs using hyperspectral in situ Rrs, which was acquired for water bodies encompassing a wide range of optical characteristics in Brazil; the chapter 5 describes the training of classification algorithms for detecting the OWTs using satellite sensors. In the chapter 3, it is shown that Rrs computed on Kutsers method is lower than that of Mobleys in all water types, with bias reaching up to -100%. Both methods allow satisfactory calibration of biooptical algorithms when they are used apart, but there is a significant accuracy reduction when both methods are mixed in the same database. Furthermore, almost half of the samples are labeled with different clusters depending on the Rrs method. Hence, merge both methods for calibrating biooptical algorithms is viable when a validation dataset is used, but spectral clustering should be avoided. In the chapter 4, a total of eight OWTs are computed based on Rrs shape and magnitude, which represent different optical and limnological characteristics of Brazilian waters. The OWT 1 represents transparent waters with low TSM, Chl-a, and CDOM concentrations; the OWT 2 represents transparent waters with moderate CDOM and TSM; OWT 4 is characterized by waters with algae bloom in aquatic system with moderate TSM concentration; OWT 5 is characterized by waters with algae bloom in low TSM concentration; OWT 6 is composed by waters with severe algae bloom density; OWT 7 is characterized by waters with the highest CDOM concentration; OWT 8 is waters with high TSM concentration; OWT 9 is waters with the highest scattering and TSM concentration. In the chapter 5, classification algorithms are trained for detecting the OWTs in satellite images of Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+. Sentinel-2 MSI has the best spectral resolution for classifying OWTs and exhibited satisfactory accuracy (Recall from 0.77 to 0.99) in satellite images. On the other hand, Landsat-8 OLI and Landsat-7 ETM+ classifications are profoundly affected by the overestimation of nearx infrared bands, causing weak accuracy water bodies characterized by algae blooms (OWTs 4, 5, and 6). In conclusion, the proposed have many applications, such as i) support of sampling design and survey campaigns; ii) detection of water quality anomalies caused by abrupt changes such in sediment loading and onset of algal blooms; iii) it could also be used for a census of Brazilian surface waters and provide reliable data in a macroscale level; last, iv) It could be used for improving the accuracy and the scope of semi-analytical algorithms based on Rrs by using the OWT in the calibration and validation process.
id INPE_9e7417d8d85deb119af123f46a04c7a4
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2020/03.03.16.25.24-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUsing optical water types for satellite monitoring of brazilian inland watersUso de tipos ópticos de água para o monitoramento das águas interiores brasileiras por satélites2020-02-27Evlyn Márcia Leão de Moraes NovoFelipe de Lucia LoboMauricio Almeida NoernbergMaycira CostaEdson Filisbino Freire da SilvaInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Sensoriamento RemotoINPEBRremote sensingoptical water typesinland waterssensoriamento remototipos ópticos de águaáguas interioresOne of the key issues of monitoring inland water quality is spatial-temporal sampling because water quality can rapidly change due to natural and anthropogenic influence. Remote sensing of inland waters is a reliable tool for monitoring water quality in large areas and time-series. However, the traditional method of calibrating bio-optical algorithms for limnological parameters (e.g., Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and Colored Dissolved Organic Matter (CDOM)) is limited to bio-optical characteristics of the study sites used for algorithm calibration. Consequently, bio-optical algorithms are not suitable for monitoring inland waters on a macro-scale level. On the other hand, monitoring Optical Water Types (OWT) has shown a macro-scale application, while those OWTs also represent changes in Chl-a, TSM, and CDOM concentrations. Thus, monitoring Brazilian OWTs could be a useful tool for water management on a wide scale. The objective of this study is to create a method for monitoring the water quality of Brazilian inland waters using OWTs. The study is described in three chapters; the chapter 3 assesses the uncertainties related to the merging of spectra measurements obtained under different protocols of computing remote sensing reflectance (Rrs); the chapter 4 describes the identification of Brazilian OWTs using hyperspectral in situ Rrs, which was acquired for water bodies encompassing a wide range of optical characteristics in Brazil; the chapter 5 describes the training of classification algorithms for detecting the OWTs using satellite sensors. In the chapter 3, it is shown that Rrs computed on Kutsers method is lower than that of Mobleys in all water types, with bias reaching up to -100%. Both methods allow satisfactory calibration of biooptical algorithms when they are used apart, but there is a significant accuracy reduction when both methods are mixed in the same database. Furthermore, almost half of the samples are labeled with different clusters depending on the Rrs method. Hence, merge both methods for calibrating biooptical algorithms is viable when a validation dataset is used, but spectral clustering should be avoided. In the chapter 4, a total of eight OWTs are computed based on Rrs shape and magnitude, which represent different optical and limnological characteristics of Brazilian waters. The OWT 1 represents transparent waters with low TSM, Chl-a, and CDOM concentrations; the OWT 2 represents transparent waters with moderate CDOM and TSM; OWT 4 is characterized by waters with algae bloom in aquatic system with moderate TSM concentration; OWT 5 is characterized by waters with algae bloom in low TSM concentration; OWT 6 is composed by waters with severe algae bloom density; OWT 7 is characterized by waters with the highest CDOM concentration; OWT 8 is waters with high TSM concentration; OWT 9 is waters with the highest scattering and TSM concentration. In the chapter 5, classification algorithms are trained for detecting the OWTs in satellite images of Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+. Sentinel-2 MSI has the best spectral resolution for classifying OWTs and exhibited satisfactory accuracy (Recall from 0.77 to 0.99) in satellite images. On the other hand, Landsat-8 OLI and Landsat-7 ETM+ classifications are profoundly affected by the overestimation of nearx infrared bands, causing weak accuracy water bodies characterized by algae blooms (OWTs 4, 5, and 6). In conclusion, the proposed have many applications, such as i) support of sampling design and survey campaigns; ii) detection of water quality anomalies caused by abrupt changes such in sediment loading and onset of algal blooms; iii) it could also be used for a census of Brazilian surface waters and provide reliable data in a macroscale level; last, iv) It could be used for improving the accuracy and the scope of semi-analytical algorithms based on Rrs by using the OWT in the calibration and validation process.Um dos fatores limitantes para se monitorar a qualidade das águas interiores é a cobertura espaço-temporal de amostragens, visto que a qualidade da água pode mudar rapidamente por causas naturais ou antropogênicas. O sensoriamento remoto de águas interiores é uma excelente ferramenta para monitorar com maior frequência grandes regiões. Entretanto, o método tradicional de calibração de algoritmos bio-ópticos para a estimativa de parâmetros como concentração de Material Total Suspenso (TSM), clorofila-a (Chl-a), e matéria orgânica colorida dissolvida (CDOM) tem sua aplicação limitada às regiões para as quais estes foram calibrados, e, portanto, não podem ser aplicados em macro escala. Por outro lado, o monitoramento de tipos ópticos de água (OWT) possui aplicação em macro escala pois estes também representam alterações em TSM, Chl-a, e CDOM. Sendo assim, o uso de OWTs para o monitoramento de grandes regiões, como o território brasileiro, pode ser vantajoso. Essa vantagem fundamenta o objetivo deste estudo, de criar um método para o monitoramento das águas brasileiras usando OWTs. Este estudo encontra-se descrito em três capítulos; o capítulo 3 investiga as incertezas geradas quando diferentes métodos de correção de glint para o cálculo da reflectância de sensoriamento remoto (Rrs) são misturados para formar uma única base de dados; o capítulo 4 descreve como as OWTs de sistemas aquáticos interiores brasileiros foram geradas a partir de medidas de Rrs hiperespectral representativas de um amplo range de características ópticas dos corpos de água do Brasil; o capítulo 5 descreve o processo de treinamento de algoritmos classificadores desenvolvidos para detectar OWTs definidas por dados hiper espectrais aplicados a sensores multiespectrais. Nos resultados do capítulo 3, a Rrs calculada utilizando o método do Kutser é mais baixa que a Rrs calculada pelo método do Mobley em todos tipos de água, sendo que a Rrs do Kutser pode subestimar em até -100% a Rrs corrigida por Mobley. Ambos os métodos permitem calibrar algoritmos bio-ópticos quando são usados separados, mas quando são combinados em uma única base de dados, pode haver uma queda significativa na acurácia dos algoritmos. Além disso, o processo de classificação (clustering) de espectros de Rrs, aproximadamente metade das amostras são agrupadas em classes distintas em função do método de correção de glint utilizado. Portanto, ambos os métodos de correção de glint podem ser combinados para calibração de algoritmos bioópticos, desde que uma base de dados de avaliação seja utilizada. Por outro lado, deve se evitar clusterizar espectros combinando os dois métodos. No capítulo 4, um total de oito OWTs foram obtidas utilizando a forma e magnitude da Rrs, cujas propriedades ópticas e limnológicas são distintas. A OWT 1 compreende águas transparentes com baixa concentração de TSM, Chl-a e CDOM; a OWT 2 compreende águas transparentes com moderada concentração de CDOM e TSM; a OWT 4 inclui águas com floração de algas em ambientes com concentração moderada de TSM; a OWT 5 compreende águas com floração de algas em ambientes com baixa concentração de TSM; a OWT 6 inclui águas com florações de algas com alta densidade; a OWT 7 compreende águas com elevadas concentrações de CDOM; a OWT 8 são águas com alta concentração de TSM; e a OWT 9 são águas com alto retro espalhamento e as mais altas concentrações de TSM. No capítulo 5, algoritmos classificadores foram treinados para detectarem as OWTs em imagens dos sensores Sentinel-2 MSI, Landsat-8 OLI e Landsat-7 ETM+. Sentinel-2 MSI mostrou a melhor capacidade espectral para classificar as OWTs. Nas imagens de satélite, o desempenho dos classificadores é muito sensível a correção atmosférica, sendo o Sentinel-2 MSI o que apresenta o melhor desempenho entre as imagens orbitais. Por outro lado, as classificações das imagens obtidas por Landsat-8 OLI e Landsat-7 ETM+ foram significativamente afetadas pela super estimação de suas bandas no infravermelho próximo, o que levou à redução da acurácia de classificação de OWTs relacionadas a floração de algas (OWTs 4, 5 e 6). Concluindo, a utilização do método proposto neste estudo para o monitoramento das águas interiores brasileiras pode: i) fornecer subsídios para o delineamento amostral e para o planejamento de campanhas de campo; ii) permitir detecção de anomalias em mudanças abruptas do ambiente, como alto aporte de sedimentos e a floração de algas; iii) o método pode também ser utilizado para um cadastro das águas superficiais brasileiras, informação essencial para determinar um nível de referência da qualidade da água contra qual medir impactos antropogênicos e naturais em um nível de macro escala.; iv) melhorar a acurácia de algoritmos semi-analíticos baseados em Rrs, usando as OWTs durante o processo de calibração e validação.http://urlib.net/sid.inpe.br/mtc-m21c/2020/03.03.16.25info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:14Zoai:urlib.net:sid.inpe.br/mtc-m21c/2020/03.03.16.25.24-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:14.605Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Using optical water types for satellite monitoring of brazilian inland waters
dc.title.alternative.pt.fl_str_mv Uso de tipos ópticos de água para o monitoramento das águas interiores brasileiras por satélites
title Using optical water types for satellite monitoring of brazilian inland waters
spellingShingle Using optical water types for satellite monitoring of brazilian inland waters
Edson Filisbino Freire da Silva
title_short Using optical water types for satellite monitoring of brazilian inland waters
title_full Using optical water types for satellite monitoring of brazilian inland waters
title_fullStr Using optical water types for satellite monitoring of brazilian inland waters
title_full_unstemmed Using optical water types for satellite monitoring of brazilian inland waters
title_sort Using optical water types for satellite monitoring of brazilian inland waters
author Edson Filisbino Freire da Silva
author_facet Edson Filisbino Freire da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Evlyn Márcia Leão de Moraes Novo
dc.contributor.advisor2.fl_str_mv Felipe de Lucia Lobo
dc.contributor.referee1.fl_str_mv Mauricio Almeida Noernberg
dc.contributor.referee2.fl_str_mv Maycira Costa
dc.contributor.author.fl_str_mv Edson Filisbino Freire da Silva
contributor_str_mv Evlyn Márcia Leão de Moraes Novo
Felipe de Lucia Lobo
Mauricio Almeida Noernberg
Maycira Costa
dc.description.abstract.por.fl_txt_mv One of the key issues of monitoring inland water quality is spatial-temporal sampling because water quality can rapidly change due to natural and anthropogenic influence. Remote sensing of inland waters is a reliable tool for monitoring water quality in large areas and time-series. However, the traditional method of calibrating bio-optical algorithms for limnological parameters (e.g., Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and Colored Dissolved Organic Matter (CDOM)) is limited to bio-optical characteristics of the study sites used for algorithm calibration. Consequently, bio-optical algorithms are not suitable for monitoring inland waters on a macro-scale level. On the other hand, monitoring Optical Water Types (OWT) has shown a macro-scale application, while those OWTs also represent changes in Chl-a, TSM, and CDOM concentrations. Thus, monitoring Brazilian OWTs could be a useful tool for water management on a wide scale. The objective of this study is to create a method for monitoring the water quality of Brazilian inland waters using OWTs. The study is described in three chapters; the chapter 3 assesses the uncertainties related to the merging of spectra measurements obtained under different protocols of computing remote sensing reflectance (Rrs); the chapter 4 describes the identification of Brazilian OWTs using hyperspectral in situ Rrs, which was acquired for water bodies encompassing a wide range of optical characteristics in Brazil; the chapter 5 describes the training of classification algorithms for detecting the OWTs using satellite sensors. In the chapter 3, it is shown that Rrs computed on Kutsers method is lower than that of Mobleys in all water types, with bias reaching up to -100%. Both methods allow satisfactory calibration of biooptical algorithms when they are used apart, but there is a significant accuracy reduction when both methods are mixed in the same database. Furthermore, almost half of the samples are labeled with different clusters depending on the Rrs method. Hence, merge both methods for calibrating biooptical algorithms is viable when a validation dataset is used, but spectral clustering should be avoided. In the chapter 4, a total of eight OWTs are computed based on Rrs shape and magnitude, which represent different optical and limnological characteristics of Brazilian waters. The OWT 1 represents transparent waters with low TSM, Chl-a, and CDOM concentrations; the OWT 2 represents transparent waters with moderate CDOM and TSM; OWT 4 is characterized by waters with algae bloom in aquatic system with moderate TSM concentration; OWT 5 is characterized by waters with algae bloom in low TSM concentration; OWT 6 is composed by waters with severe algae bloom density; OWT 7 is characterized by waters with the highest CDOM concentration; OWT 8 is waters with high TSM concentration; OWT 9 is waters with the highest scattering and TSM concentration. In the chapter 5, classification algorithms are trained for detecting the OWTs in satellite images of Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+. Sentinel-2 MSI has the best spectral resolution for classifying OWTs and exhibited satisfactory accuracy (Recall from 0.77 to 0.99) in satellite images. On the other hand, Landsat-8 OLI and Landsat-7 ETM+ classifications are profoundly affected by the overestimation of nearx infrared bands, causing weak accuracy water bodies characterized by algae blooms (OWTs 4, 5, and 6). In conclusion, the proposed have many applications, such as i) support of sampling design and survey campaigns; ii) detection of water quality anomalies caused by abrupt changes such in sediment loading and onset of algal blooms; iii) it could also be used for a census of Brazilian surface waters and provide reliable data in a macroscale level; last, iv) It could be used for improving the accuracy and the scope of semi-analytical algorithms based on Rrs by using the OWT in the calibration and validation process.
Um dos fatores limitantes para se monitorar a qualidade das águas interiores é a cobertura espaço-temporal de amostragens, visto que a qualidade da água pode mudar rapidamente por causas naturais ou antropogênicas. O sensoriamento remoto de águas interiores é uma excelente ferramenta para monitorar com maior frequência grandes regiões. Entretanto, o método tradicional de calibração de algoritmos bio-ópticos para a estimativa de parâmetros como concentração de Material Total Suspenso (TSM), clorofila-a (Chl-a), e matéria orgânica colorida dissolvida (CDOM) tem sua aplicação limitada às regiões para as quais estes foram calibrados, e, portanto, não podem ser aplicados em macro escala. Por outro lado, o monitoramento de tipos ópticos de água (OWT) possui aplicação em macro escala pois estes também representam alterações em TSM, Chl-a, e CDOM. Sendo assim, o uso de OWTs para o monitoramento de grandes regiões, como o território brasileiro, pode ser vantajoso. Essa vantagem fundamenta o objetivo deste estudo, de criar um método para o monitoramento das águas brasileiras usando OWTs. Este estudo encontra-se descrito em três capítulos; o capítulo 3 investiga as incertezas geradas quando diferentes métodos de correção de glint para o cálculo da reflectância de sensoriamento remoto (Rrs) são misturados para formar uma única base de dados; o capítulo 4 descreve como as OWTs de sistemas aquáticos interiores brasileiros foram geradas a partir de medidas de Rrs hiperespectral representativas de um amplo range de características ópticas dos corpos de água do Brasil; o capítulo 5 descreve o processo de treinamento de algoritmos classificadores desenvolvidos para detectar OWTs definidas por dados hiper espectrais aplicados a sensores multiespectrais. Nos resultados do capítulo 3, a Rrs calculada utilizando o método do Kutser é mais baixa que a Rrs calculada pelo método do Mobley em todos tipos de água, sendo que a Rrs do Kutser pode subestimar em até -100% a Rrs corrigida por Mobley. Ambos os métodos permitem calibrar algoritmos bio-ópticos quando são usados separados, mas quando são combinados em uma única base de dados, pode haver uma queda significativa na acurácia dos algoritmos. Além disso, o processo de classificação (clustering) de espectros de Rrs, aproximadamente metade das amostras são agrupadas em classes distintas em função do método de correção de glint utilizado. Portanto, ambos os métodos de correção de glint podem ser combinados para calibração de algoritmos bioópticos, desde que uma base de dados de avaliação seja utilizada. Por outro lado, deve se evitar clusterizar espectros combinando os dois métodos. No capítulo 4, um total de oito OWTs foram obtidas utilizando a forma e magnitude da Rrs, cujas propriedades ópticas e limnológicas são distintas. A OWT 1 compreende águas transparentes com baixa concentração de TSM, Chl-a e CDOM; a OWT 2 compreende águas transparentes com moderada concentração de CDOM e TSM; a OWT 4 inclui águas com floração de algas em ambientes com concentração moderada de TSM; a OWT 5 compreende águas com floração de algas em ambientes com baixa concentração de TSM; a OWT 6 inclui águas com florações de algas com alta densidade; a OWT 7 compreende águas com elevadas concentrações de CDOM; a OWT 8 são águas com alta concentração de TSM; e a OWT 9 são águas com alto retro espalhamento e as mais altas concentrações de TSM. No capítulo 5, algoritmos classificadores foram treinados para detectarem as OWTs em imagens dos sensores Sentinel-2 MSI, Landsat-8 OLI e Landsat-7 ETM+. Sentinel-2 MSI mostrou a melhor capacidade espectral para classificar as OWTs. Nas imagens de satélite, o desempenho dos classificadores é muito sensível a correção atmosférica, sendo o Sentinel-2 MSI o que apresenta o melhor desempenho entre as imagens orbitais. Por outro lado, as classificações das imagens obtidas por Landsat-8 OLI e Landsat-7 ETM+ foram significativamente afetadas pela super estimação de suas bandas no infravermelho próximo, o que levou à redução da acurácia de classificação de OWTs relacionadas a floração de algas (OWTs 4, 5 e 6). Concluindo, a utilização do método proposto neste estudo para o monitoramento das águas interiores brasileiras pode: i) fornecer subsídios para o delineamento amostral e para o planejamento de campanhas de campo; ii) permitir detecção de anomalias em mudanças abruptas do ambiente, como alto aporte de sedimentos e a floração de algas; iii) o método pode também ser utilizado para um cadastro das águas superficiais brasileiras, informação essencial para determinar um nível de referência da qualidade da água contra qual medir impactos antropogênicos e naturais em um nível de macro escala.; iv) melhorar a acurácia de algoritmos semi-analíticos baseados em Rrs, usando as OWTs durante o processo de calibração e validação.
description One of the key issues of monitoring inland water quality is spatial-temporal sampling because water quality can rapidly change due to natural and anthropogenic influence. Remote sensing of inland waters is a reliable tool for monitoring water quality in large areas and time-series. However, the traditional method of calibrating bio-optical algorithms for limnological parameters (e.g., Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and Colored Dissolved Organic Matter (CDOM)) is limited to bio-optical characteristics of the study sites used for algorithm calibration. Consequently, bio-optical algorithms are not suitable for monitoring inland waters on a macro-scale level. On the other hand, monitoring Optical Water Types (OWT) has shown a macro-scale application, while those OWTs also represent changes in Chl-a, TSM, and CDOM concentrations. Thus, monitoring Brazilian OWTs could be a useful tool for water management on a wide scale. The objective of this study is to create a method for monitoring the water quality of Brazilian inland waters using OWTs. The study is described in three chapters; the chapter 3 assesses the uncertainties related to the merging of spectra measurements obtained under different protocols of computing remote sensing reflectance (Rrs); the chapter 4 describes the identification of Brazilian OWTs using hyperspectral in situ Rrs, which was acquired for water bodies encompassing a wide range of optical characteristics in Brazil; the chapter 5 describes the training of classification algorithms for detecting the OWTs using satellite sensors. In the chapter 3, it is shown that Rrs computed on Kutsers method is lower than that of Mobleys in all water types, with bias reaching up to -100%. Both methods allow satisfactory calibration of biooptical algorithms when they are used apart, but there is a significant accuracy reduction when both methods are mixed in the same database. Furthermore, almost half of the samples are labeled with different clusters depending on the Rrs method. Hence, merge both methods for calibrating biooptical algorithms is viable when a validation dataset is used, but spectral clustering should be avoided. In the chapter 4, a total of eight OWTs are computed based on Rrs shape and magnitude, which represent different optical and limnological characteristics of Brazilian waters. The OWT 1 represents transparent waters with low TSM, Chl-a, and CDOM concentrations; the OWT 2 represents transparent waters with moderate CDOM and TSM; OWT 4 is characterized by waters with algae bloom in aquatic system with moderate TSM concentration; OWT 5 is characterized by waters with algae bloom in low TSM concentration; OWT 6 is composed by waters with severe algae bloom density; OWT 7 is characterized by waters with the highest CDOM concentration; OWT 8 is waters with high TSM concentration; OWT 9 is waters with the highest scattering and TSM concentration. In the chapter 5, classification algorithms are trained for detecting the OWTs in satellite images of Sentinel-2 MSI, Landsat-8 OLI, and Landsat-7 ETM+. Sentinel-2 MSI has the best spectral resolution for classifying OWTs and exhibited satisfactory accuracy (Recall from 0.77 to 0.99) in satellite images. On the other hand, Landsat-8 OLI and Landsat-7 ETM+ classifications are profoundly affected by the overestimation of nearx infrared bands, causing weak accuracy water bodies characterized by algae blooms (OWTs 4, 5, and 6). In conclusion, the proposed have many applications, such as i) support of sampling design and survey campaigns; ii) detection of water quality anomalies caused by abrupt changes such in sediment loading and onset of algal blooms; iii) it could also be used for a census of Brazilian surface waters and provide reliable data in a macroscale level; last, iv) It could be used for improving the accuracy and the scope of semi-analytical algorithms based on Rrs by using the OWT in the calibration and validation process.
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2020/03.03.16.25
url http://urlib.net/sid.inpe.br/mtc-m21c/2020/03.03.16.25
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Sensoriamento Remoto
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Sensoriamento Remoto
contributor_advisor1_txtF_mv Evlyn Márcia Leão de Moraes Novo
_version_ 1706809363371393024