Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP

Detalhes bibliográficos
Autor(a) principal: Paulo Henrique Mineiro Leite
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m21b/2015/06.09.17.32
Resumo: This work is a computational study of a hypersonic rarefied non-reacting flow past a combined gap/step configuration at zero-degree angle of attack in thermal nonequilibrium conditions. Effects on the flowfield structure and on the aerodynamic surface quantities due to changes in the gap L/H ratio and on the step frontal-face height h in a combined gap/step configuration are investigated by employing the Direct Simulation Monte Carlo method. The work focuses the attention of designers of hypersonic configurations on the fundamental parameter of surface discontinuity, which can have an important impact on even initial design. The results presented highlight the sensitivity of the primary flowfield properties - velocity, density, pressure, and temperature -to changes in the gap L/H ratio and in the step frontal-face height h in a combined gap/step configuration. In addition, the behavior of heat transfer, pressure and skin friction coefficients due to variation in the gap L/H ratio and in the step frontal-face height h is detailed. For the conditions investigated in the present account, the analysis shows that hypersonic flow past a combined gap/step configuration in the transition flow regime is characterized by a strong compression ahead of a combined gap/step, which influences the aerodynamic surface properties upstream and adjacent to the step frontal-face. The analysis also shows that the upstream disturbance imposed by the combined gap/step configuration increased with increasing the step frontal-face height h. As a consequence, it was found that the aerodynamic heating and pressure loads were affected by the step frontal-face height changes. Locally high heating and pressure loads were observed at three locations along the surface, i.e., on the lower surface, on the frontal-face surface, and on the upper surface. It was evident that these loads increased with increasing the step frontal-face h. Peak values for the heat transfer coefficient on the frontal-face surface were at least one order of magnitude larger than the maximum value observed for a smooth surface, i.e., a flat-plate without a combined gap/step. Furthermore, the gap L/H ratio in a combined gap/step did not affect the aerodynamic surface coefficients along lower surface. Additionally, it was also found that density and pressure inside the gap in a combined gap/step configuration dramatically increased when compared to those observed for the gap alone due to the presence of the step. Finally, a comparison of the present simulation results with numerical and experimental data showed close agreement concerning to the wall pressure and kinetic temperature acting on the combined gap/step surface.
id INPE_adf72ca00ea2dec2ccef1690882c8854
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21b/2015/06.09.17.32.49-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisComputational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEPAnálise computacional dos efeitos aerotermodnâmicos em um veículo de reentrada com descontinuidade na superfície do tipo filete/degrau.2015-06-25Wilson Fernando Nogueira dos SantosJerônimo dos Santos TravelhoDenise KalempaHelcio Francisco Villa NovaHumberto Araujo MachadoPaulo Henrique Mineiro LeiteInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Combustão e PropulsãoINPEBRescoamento hipersônicoescoamento rarefeitogeometria combinada filete/degrauveículo de reentradahypersonic flowrarefied flowcombined gap/step flowreentry vehicleThis work is a computational study of a hypersonic rarefied non-reacting flow past a combined gap/step configuration at zero-degree angle of attack in thermal nonequilibrium conditions. Effects on the flowfield structure and on the aerodynamic surface quantities due to changes in the gap L/H ratio and on the step frontal-face height h in a combined gap/step configuration are investigated by employing the Direct Simulation Monte Carlo method. The work focuses the attention of designers of hypersonic configurations on the fundamental parameter of surface discontinuity, which can have an important impact on even initial design. The results presented highlight the sensitivity of the primary flowfield properties - velocity, density, pressure, and temperature -to changes in the gap L/H ratio and in the step frontal-face height h in a combined gap/step configuration. In addition, the behavior of heat transfer, pressure and skin friction coefficients due to variation in the gap L/H ratio and in the step frontal-face height h is detailed. For the conditions investigated in the present account, the analysis shows that hypersonic flow past a combined gap/step configuration in the transition flow regime is characterized by a strong compression ahead of a combined gap/step, which influences the aerodynamic surface properties upstream and adjacent to the step frontal-face. The analysis also shows that the upstream disturbance imposed by the combined gap/step configuration increased with increasing the step frontal-face height h. As a consequence, it was found that the aerodynamic heating and pressure loads were affected by the step frontal-face height changes. Locally high heating and pressure loads were observed at three locations along the surface, i.e., on the lower surface, on the frontal-face surface, and on the upper surface. It was evident that these loads increased with increasing the step frontal-face h. Peak values for the heat transfer coefficient on the frontal-face surface were at least one order of magnitude larger than the maximum value observed for a smooth surface, i.e., a flat-plate without a combined gap/step. Furthermore, the gap L/H ratio in a combined gap/step did not affect the aerodynamic surface coefficients along lower surface. Additionally, it was also found that density and pressure inside the gap in a combined gap/step configuration dramatically increased when compared to those observed for the gap alone due to the presence of the step. Finally, a comparison of the present simulation results with numerical and experimental data showed close agreement concerning to the wall pressure and kinetic temperature acting on the combined gap/step surface.O presente trabalho descreve um estudo computacional de um escoamento hipersônico rarefeito não-reativo incidindo sobre uma geometria definida pela combinação de um filete e um degrau. Nesse estudo, investigou-se, utilizando-se o método Direct Simulation Monte Carlo (DSMC), o efeito na estrutura do escoamento e nas quantidades aerodinâmicas na superfície da geometria devido a mudanças na razão argura/profundidade (L/H) do filete e na altura h da face frontal do degrau. Define-se por estrutura do escoamento a distribuição das propriedades primárias, tais como velocidade, massa específica, pressão e temperatura, ao redor da geometria filete/degrau. Denota-se como propriedades aerotermodinâmicas na superfície o fluxo de calor e as forças normal e tangencial agindo na superfície em termos de coeficiente de transferência de calor, coeficiente de pressão, e coeficiente de atrito. Os resultados obtidos apresentam o comportamento dessas propriedades devido a mudanças nos dois parâmetros geométricos, a razão L/H e a altura h. O estudo mostrou que a estrutura do escoamento ao redor da geometria filete/degrau é caracterizada por uma forte zona de compressão a montante do degrau, na qual afeta as propriedades aerodinâmicas não somente na superfície a montante da geometria filete/degrau bem como na face do degrau. A análise também mostrou que a extensão desse efeito a montante aumentou com o aumento da face frontal h do degrau. Como resultado, as cargas térmicas e de pressão foram afetadas devido a mudanças na altura h do degrau. Altas cargas térmicas e de pressão foram observadas em determinadas posições na superfície a montante a geometria filete/degrau, na face do degrau, e na superfície a jusante a geometria. Os valores obtidos para o coeficiente de transferência de calor ao longo da face do degrau, foram de uma ordem de magnitude superiores ao valor máximo observado para uma superfície livre de descontinuidades, i.e., uma placa plana sem a geometria filete/degrau. No que concerne as variações da razão L/H do filete em uma geometria combinada filete/degrau, observou-se que estas variações não afetaram as propriedades aerotermodinâmicas ao longo da superfície inferior, para as condições investigadas. Ademais foi também observado um aumento expressivo nas propriedades primárias de pressão e massa específica dentro do filete presente na geometria filete/degrau, devido a presença do degrau, quando comparados aos resultados obtidos de quando da existência de somente o filete. Finalmente, dados experimentais e numéricos quando comparados com os dados obtidos pela presente simulação, mostraram estar bem próximos dos valores obtidos para as propriedades de temperatura e pressão que agem sobre a superfície da geometria filete/degrau.http://urlib.net/sid.inpe.br/mtc-m21b/2015/06.09.17.32info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:54:48Zoai:urlib.net:sid.inpe.br/mtc-m21b/2015/06.09.17.32.49-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:54:50.143Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
dc.title.alternative.pt.fl_str_mv Análise computacional dos efeitos aerotermodnâmicos em um veículo de reentrada com descontinuidade na superfície do tipo filete/degrau.
title Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
spellingShingle Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
Paulo Henrique Mineiro Leite
title_short Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
title_full Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
title_fullStr Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
title_full_unstemmed Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
title_sort Computational analysis of the aerothermodynamic effects in a reentry vehicle with surface discontinuity like a combined GAP/STEP
author Paulo Henrique Mineiro Leite
author_facet Paulo Henrique Mineiro Leite
author_role author
dc.contributor.advisor1.fl_str_mv Wilson Fernando Nogueira dos Santos
dc.contributor.referee1.fl_str_mv Jerônimo dos Santos Travelho
dc.contributor.referee2.fl_str_mv Denise Kalempa
dc.contributor.referee3.fl_str_mv Helcio Francisco Villa Nova
dc.contributor.referee4.fl_str_mv Humberto Araujo Machado
dc.contributor.author.fl_str_mv Paulo Henrique Mineiro Leite
contributor_str_mv Wilson Fernando Nogueira dos Santos
Jerônimo dos Santos Travelho
Denise Kalempa
Helcio Francisco Villa Nova
Humberto Araujo Machado
dc.description.abstract.por.fl_txt_mv This work is a computational study of a hypersonic rarefied non-reacting flow past a combined gap/step configuration at zero-degree angle of attack in thermal nonequilibrium conditions. Effects on the flowfield structure and on the aerodynamic surface quantities due to changes in the gap L/H ratio and on the step frontal-face height h in a combined gap/step configuration are investigated by employing the Direct Simulation Monte Carlo method. The work focuses the attention of designers of hypersonic configurations on the fundamental parameter of surface discontinuity, which can have an important impact on even initial design. The results presented highlight the sensitivity of the primary flowfield properties - velocity, density, pressure, and temperature -to changes in the gap L/H ratio and in the step frontal-face height h in a combined gap/step configuration. In addition, the behavior of heat transfer, pressure and skin friction coefficients due to variation in the gap L/H ratio and in the step frontal-face height h is detailed. For the conditions investigated in the present account, the analysis shows that hypersonic flow past a combined gap/step configuration in the transition flow regime is characterized by a strong compression ahead of a combined gap/step, which influences the aerodynamic surface properties upstream and adjacent to the step frontal-face. The analysis also shows that the upstream disturbance imposed by the combined gap/step configuration increased with increasing the step frontal-face height h. As a consequence, it was found that the aerodynamic heating and pressure loads were affected by the step frontal-face height changes. Locally high heating and pressure loads were observed at three locations along the surface, i.e., on the lower surface, on the frontal-face surface, and on the upper surface. It was evident that these loads increased with increasing the step frontal-face h. Peak values for the heat transfer coefficient on the frontal-face surface were at least one order of magnitude larger than the maximum value observed for a smooth surface, i.e., a flat-plate without a combined gap/step. Furthermore, the gap L/H ratio in a combined gap/step did not affect the aerodynamic surface coefficients along lower surface. Additionally, it was also found that density and pressure inside the gap in a combined gap/step configuration dramatically increased when compared to those observed for the gap alone due to the presence of the step. Finally, a comparison of the present simulation results with numerical and experimental data showed close agreement concerning to the wall pressure and kinetic temperature acting on the combined gap/step surface.
O presente trabalho descreve um estudo computacional de um escoamento hipersônico rarefeito não-reativo incidindo sobre uma geometria definida pela combinação de um filete e um degrau. Nesse estudo, investigou-se, utilizando-se o método Direct Simulation Monte Carlo (DSMC), o efeito na estrutura do escoamento e nas quantidades aerodinâmicas na superfície da geometria devido a mudanças na razão argura/profundidade (L/H) do filete e na altura h da face frontal do degrau. Define-se por estrutura do escoamento a distribuição das propriedades primárias, tais como velocidade, massa específica, pressão e temperatura, ao redor da geometria filete/degrau. Denota-se como propriedades aerotermodinâmicas na superfície o fluxo de calor e as forças normal e tangencial agindo na superfície em termos de coeficiente de transferência de calor, coeficiente de pressão, e coeficiente de atrito. Os resultados obtidos apresentam o comportamento dessas propriedades devido a mudanças nos dois parâmetros geométricos, a razão L/H e a altura h. O estudo mostrou que a estrutura do escoamento ao redor da geometria filete/degrau é caracterizada por uma forte zona de compressão a montante do degrau, na qual afeta as propriedades aerodinâmicas não somente na superfície a montante da geometria filete/degrau bem como na face do degrau. A análise também mostrou que a extensão desse efeito a montante aumentou com o aumento da face frontal h do degrau. Como resultado, as cargas térmicas e de pressão foram afetadas devido a mudanças na altura h do degrau. Altas cargas térmicas e de pressão foram observadas em determinadas posições na superfície a montante a geometria filete/degrau, na face do degrau, e na superfície a jusante a geometria. Os valores obtidos para o coeficiente de transferência de calor ao longo da face do degrau, foram de uma ordem de magnitude superiores ao valor máximo observado para uma superfície livre de descontinuidades, i.e., uma placa plana sem a geometria filete/degrau. No que concerne as variações da razão L/H do filete em uma geometria combinada filete/degrau, observou-se que estas variações não afetaram as propriedades aerotermodinâmicas ao longo da superfície inferior, para as condições investigadas. Ademais foi também observado um aumento expressivo nas propriedades primárias de pressão e massa específica dentro do filete presente na geometria filete/degrau, devido a presença do degrau, quando comparados aos resultados obtidos de quando da existência de somente o filete. Finalmente, dados experimentais e numéricos quando comparados com os dados obtidos pela presente simulação, mostraram estar bem próximos dos valores obtidos para as propriedades de temperatura e pressão que agem sobre a superfície da geometria filete/degrau.
description This work is a computational study of a hypersonic rarefied non-reacting flow past a combined gap/step configuration at zero-degree angle of attack in thermal nonequilibrium conditions. Effects on the flowfield structure and on the aerodynamic surface quantities due to changes in the gap L/H ratio and on the step frontal-face height h in a combined gap/step configuration are investigated by employing the Direct Simulation Monte Carlo method. The work focuses the attention of designers of hypersonic configurations on the fundamental parameter of surface discontinuity, which can have an important impact on even initial design. The results presented highlight the sensitivity of the primary flowfield properties - velocity, density, pressure, and temperature -to changes in the gap L/H ratio and in the step frontal-face height h in a combined gap/step configuration. In addition, the behavior of heat transfer, pressure and skin friction coefficients due to variation in the gap L/H ratio and in the step frontal-face height h is detailed. For the conditions investigated in the present account, the analysis shows that hypersonic flow past a combined gap/step configuration in the transition flow regime is characterized by a strong compression ahead of a combined gap/step, which influences the aerodynamic surface properties upstream and adjacent to the step frontal-face. The analysis also shows that the upstream disturbance imposed by the combined gap/step configuration increased with increasing the step frontal-face height h. As a consequence, it was found that the aerodynamic heating and pressure loads were affected by the step frontal-face height changes. Locally high heating and pressure loads were observed at three locations along the surface, i.e., on the lower surface, on the frontal-face surface, and on the upper surface. It was evident that these loads increased with increasing the step frontal-face h. Peak values for the heat transfer coefficient on the frontal-face surface were at least one order of magnitude larger than the maximum value observed for a smooth surface, i.e., a flat-plate without a combined gap/step. Furthermore, the gap L/H ratio in a combined gap/step did not affect the aerodynamic surface coefficients along lower surface. Additionally, it was also found that density and pressure inside the gap in a combined gap/step configuration dramatically increased when compared to those observed for the gap alone due to the presence of the step. Finally, a comparison of the present simulation results with numerical and experimental data showed close agreement concerning to the wall pressure and kinetic temperature acting on the combined gap/step surface.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21b/2015/06.09.17.32
url http://urlib.net/sid.inpe.br/mtc-m21b/2015/06.09.17.32
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Combustão e Propulsão
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Combustão e Propulsão
contributor_advisor1_txtF_mv Wilson Fernando Nogueira dos Santos
_version_ 1706809357601079296