High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do INPE |
Texto Completo: | http://urlib.net/sid.inpe.br/mtc-m21b/2016/02.04.22.21 |
Resumo: | Thunderstorms are the starting point of several intense phenomena such as gamma rays and X rays, neutron, positron and electron emissions. The X rays and gamma rays have energies that may reach 100 MeV. The neutron emissions may be created by energetic gamma ray photons interacting with the air via Giant Dipole Resonance, a photonuclear reaction, related to thunderstorms and lightning in a way that is not completely understood yet. In this work neutrons were assumed to be created by gamma ray photons in the energy range of 10-30 MeV emitted by leader discharges. Their production and propagation toward the ground were investigated using computer simulations. Cross sections data banks were analyzed to provide estimations on the neutrons creation probability. The analysis revealed that the probability per collision of a photonuclear occurs varies between 0 and 3.2\% through the energy range of 10 and 30 MeV. The photons mean free path within this energy range was analyzed together with the atmospheric density profile showing that for photon source altitudes above 1 km, the photons with this energy pass through a sufficiently high number of mean free path to ensure a collision. The free software EGS5 was used to treat the photons and electrons motion through the atmosphere in the intent of analyze the spread of the beams, that were assumed to be monodirectional. The photon beam presented an aperture of 2-6$^{o}$ $\pm$ 2$^{o}$ while the electron beam was broader showing an aperture of 11-13$^{o}$ $\pm$ 3$^{o}$. Since EGS5 does not take into account neutron production and motion, the neutron analysis was done with the FLUKA software simulating a photon beam in different initial heights and estimating the photon and neutron ground detection. FLUKA simulations have shown that neutrons are distributed at the ground within a radius of 2 km away from the source axis. The neutrons reached ground with a rate of 10$^{-4} $-10$^{-2}$ neutrons per gamma, which agrees with the cross section analysis done upon the neutron production. The neutron number decrease was used to estimate an upper limit of 5 km for the altitude of a punctual photon source that is capable of generating ground detectable neutrons. |
id |
INPE_ceb37a89bc091823fda96f64b5d220b7 |
---|---|
oai_identifier_str |
oai:urlib.net:sid.inpe.br/mtc-m21b/2016/02.04.22.21.51-0 |
network_acronym_str |
INPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INPE |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisHigh energy emissions from thunderstorms: HEETs, from photons to neutrons toward the groundEmissões de alta energia provindas de nuvens de tempestade. HEETs: de fótons para nêutrons ao solo.2016-03-04Fernanda de São Sabbas TavaresUte Maria EbertJoaquim Eduardo Rezende CostaClaudio Antonio FedericoGabriel Sousa DinizInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências AtmosféricasINPEBRneutronsphotonscross sectionsMonte Carlonêutronsfótonsseções de choqueThunderstorms are the starting point of several intense phenomena such as gamma rays and X rays, neutron, positron and electron emissions. The X rays and gamma rays have energies that may reach 100 MeV. The neutron emissions may be created by energetic gamma ray photons interacting with the air via Giant Dipole Resonance, a photonuclear reaction, related to thunderstorms and lightning in a way that is not completely understood yet. In this work neutrons were assumed to be created by gamma ray photons in the energy range of 10-30 MeV emitted by leader discharges. Their production and propagation toward the ground were investigated using computer simulations. Cross sections data banks were analyzed to provide estimations on the neutrons creation probability. The analysis revealed that the probability per collision of a photonuclear occurs varies between 0 and 3.2\% through the energy range of 10 and 30 MeV. The photons mean free path within this energy range was analyzed together with the atmospheric density profile showing that for photon source altitudes above 1 km, the photons with this energy pass through a sufficiently high number of mean free path to ensure a collision. The free software EGS5 was used to treat the photons and electrons motion through the atmosphere in the intent of analyze the spread of the beams, that were assumed to be monodirectional. The photon beam presented an aperture of 2-6$^{o}$ $\pm$ 2$^{o}$ while the electron beam was broader showing an aperture of 11-13$^{o}$ $\pm$ 3$^{o}$. Since EGS5 does not take into account neutron production and motion, the neutron analysis was done with the FLUKA software simulating a photon beam in different initial heights and estimating the photon and neutron ground detection. FLUKA simulations have shown that neutrons are distributed at the ground within a radius of 2 km away from the source axis. The neutrons reached ground with a rate of 10$^{-4} $-10$^{-2}$ neutrons per gamma, which agrees with the cross section analysis done upon the neutron production. The neutron number decrease was used to estimate an upper limit of 5 km for the altitude of a punctual photon source that is capable of generating ground detectable neutrons.Nuvens de tempestade são o início de vários fenômenos intensos como os raios gama e raios X, bem como de emissões de nêutrons, pósitrons e elétrons. As emissões de raios X e raios gama possuem energias que alcançam 100 MeV. As emissões de nêutrons podem ser criadas por interações entre raios gamma com o ar através da Ressonância Gigante de Dipolo, uma reação foto-nuclear, relacionadas com as nuvens de tempestade e com raios de um modo ainda não totalmente compreendido. Neste trabalho supõe-se que os nêutrons são criados por fótons de raios gamma com energia entre 10-30 MeV emitidos durante a propagação do líder negativo. A produção e a propagação pelo ar destes nêutrons foram investigadas utilizando simulações computacionais. Bancos de dados de seções de choque foram analisados para estimar a probabilidade por colisão de uma reação foto-nuclear acontecer. A análise revelou que essa probabilidade varia entre 0\% e 3.2\% para fótons com energia entre 10 e 30 MeV. O livre caminho médio dos fótons no intervalo de energia de 10-30 MeV foi analisado junto com o perfil de densidade atmosférica. A análise mostrou que para fótons com altitude inicial acima de 1 km, eles passam por livres caminhos médios o suficiente para a probabilidade de ocorrência de ao menos uma colisão ser garantida. O software livre EGS5 baseado no método Monte Carlo foi usado para tratar o movimento dos fótons e elétrons pela atmosfera no intuito de estudar a difusão de feixes monodirecionais dessas partículas. Foi observado que o feixe de fótons possui uma abertura entre 2-6$^{o}$ $\pm$ 2$^{o}$ enquanto o feixe de elétrons possui uma abertura de 11-13$^{o}$ $\pm$ 3$^{o}$ . A análise de nêutrons foi feita com o software FLUKA simulando um feixe de fótons em diferentes altitudes iniciais e estimando a detecção de fótons e nêutrons no solo. As simulações do FLUKA mostraram que os nêutrons se distribuem no solo em uma distância radial da fonte de 2 km, chegando ao solo numa razão entre 10$^{-4}$ até 10$^{-2}$ nêutrons/fótons, o que concorda com a análise das seções de choque. A diminuição dos nêutrons detectados em solo permitiu a estimativa de uma altura limite de 5 km para uma fonte pontual de fótons capaz de produzir nêutrons detectáveis em solo.http://urlib.net/sid.inpe.br/mtc-m21b/2016/02.04.22.21info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:54:58Zoai:urlib.net:sid.inpe.br/mtc-m21b/2016/02.04.22.21.51-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:54:59.412Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false |
dc.title.en.fl_str_mv |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
dc.title.alternative.pt.fl_str_mv |
Emissões de alta energia provindas de nuvens de tempestade. HEETs: de fótons para nêutrons ao solo. |
title |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
spellingShingle |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground Gabriel Sousa Diniz |
title_short |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
title_full |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
title_fullStr |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
title_full_unstemmed |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
title_sort |
High energy emissions from thunderstorms: HEETs, from photons to neutrons toward the ground |
author |
Gabriel Sousa Diniz |
author_facet |
Gabriel Sousa Diniz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Fernanda de São Sabbas Tavares |
dc.contributor.advisor2.fl_str_mv |
Ute Maria Ebert |
dc.contributor.referee1.fl_str_mv |
Joaquim Eduardo Rezende Costa |
dc.contributor.referee2.fl_str_mv |
Claudio Antonio Federico |
dc.contributor.author.fl_str_mv |
Gabriel Sousa Diniz |
contributor_str_mv |
Fernanda de São Sabbas Tavares Ute Maria Ebert Joaquim Eduardo Rezende Costa Claudio Antonio Federico |
dc.description.abstract.por.fl_txt_mv |
Thunderstorms are the starting point of several intense phenomena such as gamma rays and X rays, neutron, positron and electron emissions. The X rays and gamma rays have energies that may reach 100 MeV. The neutron emissions may be created by energetic gamma ray photons interacting with the air via Giant Dipole Resonance, a photonuclear reaction, related to thunderstorms and lightning in a way that is not completely understood yet. In this work neutrons were assumed to be created by gamma ray photons in the energy range of 10-30 MeV emitted by leader discharges. Their production and propagation toward the ground were investigated using computer simulations. Cross sections data banks were analyzed to provide estimations on the neutrons creation probability. The analysis revealed that the probability per collision of a photonuclear occurs varies between 0 and 3.2\% through the energy range of 10 and 30 MeV. The photons mean free path within this energy range was analyzed together with the atmospheric density profile showing that for photon source altitudes above 1 km, the photons with this energy pass through a sufficiently high number of mean free path to ensure a collision. The free software EGS5 was used to treat the photons and electrons motion through the atmosphere in the intent of analyze the spread of the beams, that were assumed to be monodirectional. The photon beam presented an aperture of 2-6$^{o}$ $\pm$ 2$^{o}$ while the electron beam was broader showing an aperture of 11-13$^{o}$ $\pm$ 3$^{o}$. Since EGS5 does not take into account neutron production and motion, the neutron analysis was done with the FLUKA software simulating a photon beam in different initial heights and estimating the photon and neutron ground detection. FLUKA simulations have shown that neutrons are distributed at the ground within a radius of 2 km away from the source axis. The neutrons reached ground with a rate of 10$^{-4} $-10$^{-2}$ neutrons per gamma, which agrees with the cross section analysis done upon the neutron production. The neutron number decrease was used to estimate an upper limit of 5 km for the altitude of a punctual photon source that is capable of generating ground detectable neutrons. Nuvens de tempestade são o início de vários fenômenos intensos como os raios gama e raios X, bem como de emissões de nêutrons, pósitrons e elétrons. As emissões de raios X e raios gama possuem energias que alcançam 100 MeV. As emissões de nêutrons podem ser criadas por interações entre raios gamma com o ar através da Ressonância Gigante de Dipolo, uma reação foto-nuclear, relacionadas com as nuvens de tempestade e com raios de um modo ainda não totalmente compreendido. Neste trabalho supõe-se que os nêutrons são criados por fótons de raios gamma com energia entre 10-30 MeV emitidos durante a propagação do líder negativo. A produção e a propagação pelo ar destes nêutrons foram investigadas utilizando simulações computacionais. Bancos de dados de seções de choque foram analisados para estimar a probabilidade por colisão de uma reação foto-nuclear acontecer. A análise revelou que essa probabilidade varia entre 0\% e 3.2\% para fótons com energia entre 10 e 30 MeV. O livre caminho médio dos fótons no intervalo de energia de 10-30 MeV foi analisado junto com o perfil de densidade atmosférica. A análise mostrou que para fótons com altitude inicial acima de 1 km, eles passam por livres caminhos médios o suficiente para a probabilidade de ocorrência de ao menos uma colisão ser garantida. O software livre EGS5 baseado no método Monte Carlo foi usado para tratar o movimento dos fótons e elétrons pela atmosfera no intuito de estudar a difusão de feixes monodirecionais dessas partículas. Foi observado que o feixe de fótons possui uma abertura entre 2-6$^{o}$ $\pm$ 2$^{o}$ enquanto o feixe de elétrons possui uma abertura de 11-13$^{o}$ $\pm$ 3$^{o}$ . A análise de nêutrons foi feita com o software FLUKA simulando um feixe de fótons em diferentes altitudes iniciais e estimando a detecção de fótons e nêutrons no solo. As simulações do FLUKA mostraram que os nêutrons se distribuem no solo em uma distância radial da fonte de 2 km, chegando ao solo numa razão entre 10$^{-4}$ até 10$^{-2}$ nêutrons/fótons, o que concorda com a análise das seções de choque. A diminuição dos nêutrons detectados em solo permitiu a estimativa de uma altura limite de 5 km para uma fonte pontual de fótons capaz de produzir nêutrons detectáveis em solo. |
description |
Thunderstorms are the starting point of several intense phenomena such as gamma rays and X rays, neutron, positron and electron emissions. The X rays and gamma rays have energies that may reach 100 MeV. The neutron emissions may be created by energetic gamma ray photons interacting with the air via Giant Dipole Resonance, a photonuclear reaction, related to thunderstorms and lightning in a way that is not completely understood yet. In this work neutrons were assumed to be created by gamma ray photons in the energy range of 10-30 MeV emitted by leader discharges. Their production and propagation toward the ground were investigated using computer simulations. Cross sections data banks were analyzed to provide estimations on the neutrons creation probability. The analysis revealed that the probability per collision of a photonuclear occurs varies between 0 and 3.2\% through the energy range of 10 and 30 MeV. The photons mean free path within this energy range was analyzed together with the atmospheric density profile showing that for photon source altitudes above 1 km, the photons with this energy pass through a sufficiently high number of mean free path to ensure a collision. The free software EGS5 was used to treat the photons and electrons motion through the atmosphere in the intent of analyze the spread of the beams, that were assumed to be monodirectional. The photon beam presented an aperture of 2-6$^{o}$ $\pm$ 2$^{o}$ while the electron beam was broader showing an aperture of 11-13$^{o}$ $\pm$ 3$^{o}$. Since EGS5 does not take into account neutron production and motion, the neutron analysis was done with the FLUKA software simulating a photon beam in different initial heights and estimating the photon and neutron ground detection. FLUKA simulations have shown that neutrons are distributed at the ground within a radius of 2 km away from the source axis. The neutrons reached ground with a rate of 10$^{-4} $-10$^{-2}$ neutrons per gamma, which agrees with the cross section analysis done upon the neutron production. The neutron number decrease was used to estimate an upper limit of 5 km for the altitude of a punctual photon source that is capable of generating ground detectable neutrons. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-03-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://urlib.net/sid.inpe.br/mtc-m21b/2016/02.04.22.21 |
url |
http://urlib.net/sid.inpe.br/mtc-m21b/2016/02.04.22.21 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências Atmosféricas |
dc.publisher.initials.fl_str_mv |
INPE |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais (INPE) instacron:INPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INPE |
collection |
Biblioteca Digital de Teses e Dissertações do INPE |
instname_str |
Instituto Nacional de Pesquisas Espaciais (INPE) |
instacron_str |
INPE |
institution |
INPE |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE) |
repository.mail.fl_str_mv |
|
publisher_program_txtF_mv |
Programa de Pós-Graduação do INPE em Geofísica Espacial/Ciências Atmosféricas |
contributor_advisor1_txtF_mv |
Fernanda de São Sabbas Tavares |
_version_ |
1706809358231273472 |