Aplicação de técnicas de machine learning em modelos de escore de crédito
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do INSPER |
Texto Completo: | https://www.repositorio.insper.edu.br/handle/11224/2573 |
Resumo: | Visando o aumento do lucro e redução da perda, instituições financeiras credoras esforçam-se em melhorar o acerto ao prever as chances de potenciais devedores ficarem inadimplentes. Com o aumento da capacidade do processamento computacional, técnicas de aprendizado de máquinas estão se popularizando em diversos meios. Diante desses dois cenários, este trabalho propõe a comparação das técnicas regressão logística, random forests, xgboost e multilayer perceptron aplicadas a uma base de escore de crédito disponibilizada pela Serasa Experian contendo o público de pequenas e médias empresas. Foram implementados testes de hipóteses utilizando o teste DeLong para comparar as áreas sob a curva roc dos modelos apresentados. A principal contribuição deste trabalho foi mostrar que houve superioridade da técnica random forests quando comparada às outras apresentadas neste trabalho ao diferenciar bons ou maus pagadores. |
id |
INSP_2e618b630610f8a82c83ddcdd66eddfa |
---|---|
oai_identifier_str |
oai:repositorio.insper.edu.br:11224/2573 |
network_acronym_str |
INSP |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INSPER |
repository_id_str |
|
spelling |
Aplicação de técnicas de machine learning em modelos de escore de créditoEscore de crédito; aprendizado de máquina; regressão logística; random forests; gradient boosting; xgboost; multilayer perceptron; redes neurais artificiais; acordo de Basileia.Visando o aumento do lucro e redução da perda, instituições financeiras credoras esforçam-se em melhorar o acerto ao prever as chances de potenciais devedores ficarem inadimplentes. Com o aumento da capacidade do processamento computacional, técnicas de aprendizado de máquinas estão se popularizando em diversos meios. Diante desses dois cenários, este trabalho propõe a comparação das técnicas regressão logística, random forests, xgboost e multilayer perceptron aplicadas a uma base de escore de crédito disponibilizada pela Serasa Experian contendo o público de pequenas e médias empresas. Foram implementados testes de hipóteses utilizando o teste DeLong para comparar as áreas sob a curva roc dos modelos apresentados. A principal contribuição deste trabalho foi mostrar que houve superioridade da técnica random forests quando comparada às outras apresentadas neste trabalho ao diferenciar bons ou maus pagadores.Aiming at increasing profit and reducing loss, creditor financial institutions strive to improve the accuracy by predicting the chances of potential borrowers becoming defaulters. With increasing computational processing capacity, machine learning techniques are becoming very popular in a variety of environments. In the face of these two scenarios, this work proposes the comparison of logistic regression, random forests, xgboost and multilayer perceptron applied to a credit score dataset provided by Serasa Experian containing the public of small and medium enterprises. Hypothesis tests were used with DeLong test to compare the areas under the roc curve of the presented models. The main contribution of this work was to show that there was superiority of the random forests technique when compared to the others presented in this work to differentiate good or bad payers.Artes, RinaldoLukosiunas, AndrezaLukosiunas, Andreza2021-09-13T03:20:39Z2020-07-16T18:41:25Z2021-09-13T03:20:39Z20182020-07-16T18:41:25Z20182018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis68 p.application/pdfhttps://www.repositorio.insper.edu.br/handle/11224/2573São Paulo, SPTODOS OS DOCUMENTOS DESSA COLEÇÃO PODEM SER ACESSADOS, MANTENDO-SE OS DIREITOS DOS AUTORES PELA CITAÇÃO DA ORIGEMinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações do INSPERinstname:Instituição de Ensino Superior e de Pesquisa (INSPER)instacron:INSPER2024-04-01T12:29:09Zoai:repositorio.insper.edu.br:11224/2573Biblioteca Digital de Teses e Dissertaçõeshttps://www.insper.edu.br/biblioteca-telles/PRIhttps://repositorio.insper.edu.br/oai/requestbiblioteca@insper.edu.br ||opendoar:2024-04-01T12:29:09Biblioteca Digital de Teses e Dissertações do INSPER - Instituição de Ensino Superior e de Pesquisa (INSPER)false |
dc.title.none.fl_str_mv |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
title |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
spellingShingle |
Aplicação de técnicas de machine learning em modelos de escore de crédito Lukosiunas, Andreza Escore de crédito; aprendizado de máquina; regressão logística; random forests; gradient boosting; xgboost; multilayer perceptron; redes neurais artificiais; acordo de Basileia. |
title_short |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
title_full |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
title_fullStr |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
title_full_unstemmed |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
title_sort |
Aplicação de técnicas de machine learning em modelos de escore de crédito |
author |
Lukosiunas, Andreza |
author_facet |
Lukosiunas, Andreza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Artes, Rinaldo |
dc.contributor.author.fl_str_mv |
Lukosiunas, Andreza Lukosiunas, Andreza |
dc.subject.por.fl_str_mv |
Escore de crédito; aprendizado de máquina; regressão logística; random forests; gradient boosting; xgboost; multilayer perceptron; redes neurais artificiais; acordo de Basileia. |
topic |
Escore de crédito; aprendizado de máquina; regressão logística; random forests; gradient boosting; xgboost; multilayer perceptron; redes neurais artificiais; acordo de Basileia. |
description |
Visando o aumento do lucro e redução da perda, instituições financeiras credoras esforçam-se em melhorar o acerto ao prever as chances de potenciais devedores ficarem inadimplentes. Com o aumento da capacidade do processamento computacional, técnicas de aprendizado de máquinas estão se popularizando em diversos meios. Diante desses dois cenários, este trabalho propõe a comparação das técnicas regressão logística, random forests, xgboost e multilayer perceptron aplicadas a uma base de escore de crédito disponibilizada pela Serasa Experian contendo o público de pequenas e médias empresas. Foram implementados testes de hipóteses utilizando o teste DeLong para comparar as áreas sob a curva roc dos modelos apresentados. A principal contribuição deste trabalho foi mostrar que houve superioridade da técnica random forests quando comparada às outras apresentadas neste trabalho ao diferenciar bons ou maus pagadores. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018 2018 2020-07-16T18:41:25Z 2020-07-16T18:41:25Z 2021-09-13T03:20:39Z 2021-09-13T03:20:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.repositorio.insper.edu.br/handle/11224/2573 |
url |
https://www.repositorio.insper.edu.br/handle/11224/2573 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
68 p. application/pdf |
dc.coverage.none.fl_str_mv |
São Paulo, SP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INSPER instname:Instituição de Ensino Superior e de Pesquisa (INSPER) instacron:INSPER |
instname_str |
Instituição de Ensino Superior e de Pesquisa (INSPER) |
instacron_str |
INSPER |
institution |
INSPER |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INSPER |
collection |
Biblioteca Digital de Teses e Dissertações do INSPER |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INSPER - Instituição de Ensino Superior e de Pesquisa (INSPER) |
repository.mail.fl_str_mv |
biblioteca@insper.edu.br || |
_version_ |
1814986265948323840 |