Nanosatellites applied to optical Earth observation: a review

Detalhes bibliográficos
Autor(a) principal: Nagel,Gustavo Willy
Data de Publicação: 2020
Outros Autores: Novo,Evlyn Márcia Leão de Moraes, Kampel,Milton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Ambiente & Água
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2020000300310
Resumo: Abstract Nanosatellites and CubeSats were first developed for educational purposes. However, their low cost and short development cycle made nanosatellite constellations an affordable option for observing the Earth by remote sensing, increasing the frequency of high-resolution imagery, which is fundamental for studying and monitoring dynamic processes. In this sense, although still incipient, nanosatellite applications and proposed Earth observation missions are steadily growing in number and scientific fields. There are several initiatives from universities, space agencies and private companies to launch new nanosatellite missions. These initiatives are actively investigating new technologies to improve image quality and studying ways to increase acquisition frequency through the launch of larger constellations. So far, the private sector is leading the development of new missions, with proposals ranging from 12 to more than one thousand nanosatellite constellations. Furthermore, new nanosatellite missions have been proposed to tackle specific applications, such as natural disasters, or to test improvements on nanosatellite spatial, temporal and radiometric resolution. The unprecedented combination of high spatial and temporal resolution from nanosatellite constellations associated with improvement efforts in sensor quality is promising and may represent a trend to replace the era of large satellites for smaller and cheaper nanosatellites. This article first reports on the development and new nanosatellite missions of space agencies, universities and private companies. Then a systematic review of published articles using the most successful private constellation (PlanetScope and Doves) is presented and the principal papers are discussed.
id IPABHI-1_2bf7866ae37f42bd99bc1797cbff4510
oai_identifier_str oai:scielo:S1980-993X2020000300310
network_acronym_str IPABHI-1
network_name_str Revista Ambiente & Água
repository_id_str
spelling Nanosatellites applied to optical Earth observation: a reviewcubeSatplanetScoperemote sensingAbstract Nanosatellites and CubeSats were first developed for educational purposes. However, their low cost and short development cycle made nanosatellite constellations an affordable option for observing the Earth by remote sensing, increasing the frequency of high-resolution imagery, which is fundamental for studying and monitoring dynamic processes. In this sense, although still incipient, nanosatellite applications and proposed Earth observation missions are steadily growing in number and scientific fields. There are several initiatives from universities, space agencies and private companies to launch new nanosatellite missions. These initiatives are actively investigating new technologies to improve image quality and studying ways to increase acquisition frequency through the launch of larger constellations. So far, the private sector is leading the development of new missions, with proposals ranging from 12 to more than one thousand nanosatellite constellations. Furthermore, new nanosatellite missions have been proposed to tackle specific applications, such as natural disasters, or to test improvements on nanosatellite spatial, temporal and radiometric resolution. The unprecedented combination of high spatial and temporal resolution from nanosatellite constellations associated with improvement efforts in sensor quality is promising and may represent a trend to replace the era of large satellites for smaller and cheaper nanosatellites. This article first reports on the development and new nanosatellite missions of space agencies, universities and private companies. Then a systematic review of published articles using the most successful private constellation (PlanetScope and Doves) is presented and the principal papers are discussed.Instituto de Pesquisas Ambientais em Bacias Hidrográficas2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2020000300310Revista Ambiente & Água v.15 n.3 2020reponame:Revista Ambiente & Águainstname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)instacron:IPABHI10.4136/ambi-agua.2513info:eu-repo/semantics/openAccessNagel,Gustavo WillyNovo,Evlyn Márcia Leão de MoraesKampel,Miltoneng2020-06-16T00:00:00Zoai:scielo:S1980-993X2020000300310Revistahttp://www.ambi-agua.net/PUBhttps://old.scielo.br/oai/scielo-oai.php||ambi.agua@gmail.com1980-993X1980-993Xopendoar:2020-06-16T00:00Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)false
dc.title.none.fl_str_mv Nanosatellites applied to optical Earth observation: a review
title Nanosatellites applied to optical Earth observation: a review
spellingShingle Nanosatellites applied to optical Earth observation: a review
Nagel,Gustavo Willy
cubeSat
planetScope
remote sensing
title_short Nanosatellites applied to optical Earth observation: a review
title_full Nanosatellites applied to optical Earth observation: a review
title_fullStr Nanosatellites applied to optical Earth observation: a review
title_full_unstemmed Nanosatellites applied to optical Earth observation: a review
title_sort Nanosatellites applied to optical Earth observation: a review
author Nagel,Gustavo Willy
author_facet Nagel,Gustavo Willy
Novo,Evlyn Márcia Leão de Moraes
Kampel,Milton
author_role author
author2 Novo,Evlyn Márcia Leão de Moraes
Kampel,Milton
author2_role author
author
dc.contributor.author.fl_str_mv Nagel,Gustavo Willy
Novo,Evlyn Márcia Leão de Moraes
Kampel,Milton
dc.subject.por.fl_str_mv cubeSat
planetScope
remote sensing
topic cubeSat
planetScope
remote sensing
description Abstract Nanosatellites and CubeSats were first developed for educational purposes. However, their low cost and short development cycle made nanosatellite constellations an affordable option for observing the Earth by remote sensing, increasing the frequency of high-resolution imagery, which is fundamental for studying and monitoring dynamic processes. In this sense, although still incipient, nanosatellite applications and proposed Earth observation missions are steadily growing in number and scientific fields. There are several initiatives from universities, space agencies and private companies to launch new nanosatellite missions. These initiatives are actively investigating new technologies to improve image quality and studying ways to increase acquisition frequency through the launch of larger constellations. So far, the private sector is leading the development of new missions, with proposals ranging from 12 to more than one thousand nanosatellite constellations. Furthermore, new nanosatellite missions have been proposed to tackle specific applications, such as natural disasters, or to test improvements on nanosatellite spatial, temporal and radiometric resolution. The unprecedented combination of high spatial and temporal resolution from nanosatellite constellations associated with improvement efforts in sensor quality is promising and may represent a trend to replace the era of large satellites for smaller and cheaper nanosatellites. This article first reports on the development and new nanosatellite missions of space agencies, universities and private companies. Then a systematic review of published articles using the most successful private constellation (PlanetScope and Doves) is presented and the principal papers are discussed.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2020000300310
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2020000300310
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.4136/ambi-agua.2513
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
dc.source.none.fl_str_mv Revista Ambiente & Água v.15 n.3 2020
reponame:Revista Ambiente & Água
instname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
instacron:IPABHI
instname_str Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
instacron_str IPABHI
institution IPABHI
reponame_str Revista Ambiente & Água
collection Revista Ambiente & Água
repository.name.fl_str_mv Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
repository.mail.fl_str_mv ||ambi.agua@gmail.com
_version_ 1752129751234904064