Climate change impact assessment in a tropical headwater basin
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Ambiente & Água |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2022000100300 |
Resumo: | Abstract Changes in precipitation and air temperature may produce different impacts on the hydrological regime, compromising water supply. This study focuses on climate change impacts in the Verde River Basin (VRB), a tropical headwater basin in southeast Brazil, located in the state of Minas Gerais. The Variable Infiltration Capacity model (VIC) was calibrated and validated in the Verde River Basin. The downscaling (Eta Regional Climate Model, at 20-km resolution) of three Global Circulation Models (CanESM2, HadGEM2-ES and MIROC5) were used to drive the VIC for a historical baseline (1961-2005) and three time-slices (2011-2040, 2041-2070 and 2071-2099), under RCPs 4.5 and 8.5 scenarios. The scenarios were used as input in the hydrological model after bias correction. The hydrological model (VIC) showed satisfactory statistical performance in calibration and validation, with CNS varying from 0.77 to 0.85 for daily and monthly discharges; however, it overestimated some peak flows and underestimated the recession flows. Multi-model ensemble means predict increases of the minimum and maximum monthly average temperature for the investigated area at the end of the century. The Eta-CanESM2 indicated greater warming, mainly for RCP8.5 at the end the century, whereas Eta-HadGEM2-ES showed higher reduction in the precipitation for RCP4.5 at the beginning of the century and for RCP8.5 at the end the century, negatively impacting the evapotranspiration and discharge. Among the Regional Climate Models (RCMs), the Eta-MIROC5 showed minor changes in the components of the hydrological cycle. This study suggests that Global Circulation Models represent an additional uncertainty, which should be accounted for in the climate change impact assessment. |
id |
IPABHI-1_4f08c99b93d3f0cb8dcb80f827c77d75 |
---|---|
oai_identifier_str |
oai:scielo:S1980-993X2022000100300 |
network_acronym_str |
IPABHI-1 |
network_name_str |
Revista Ambiente & Água |
repository_id_str |
|
spelling |
Climate change impact assessment in a tropical headwater basinclimate changesRCP4.5RCP8.5VIC modelAbstract Changes in precipitation and air temperature may produce different impacts on the hydrological regime, compromising water supply. This study focuses on climate change impacts in the Verde River Basin (VRB), a tropical headwater basin in southeast Brazil, located in the state of Minas Gerais. The Variable Infiltration Capacity model (VIC) was calibrated and validated in the Verde River Basin. The downscaling (Eta Regional Climate Model, at 20-km resolution) of three Global Circulation Models (CanESM2, HadGEM2-ES and MIROC5) were used to drive the VIC for a historical baseline (1961-2005) and three time-slices (2011-2040, 2041-2070 and 2071-2099), under RCPs 4.5 and 8.5 scenarios. The scenarios were used as input in the hydrological model after bias correction. The hydrological model (VIC) showed satisfactory statistical performance in calibration and validation, with CNS varying from 0.77 to 0.85 for daily and monthly discharges; however, it overestimated some peak flows and underestimated the recession flows. Multi-model ensemble means predict increases of the minimum and maximum monthly average temperature for the investigated area at the end of the century. The Eta-CanESM2 indicated greater warming, mainly for RCP8.5 at the end the century, whereas Eta-HadGEM2-ES showed higher reduction in the precipitation for RCP4.5 at the beginning of the century and for RCP8.5 at the end the century, negatively impacting the evapotranspiration and discharge. Among the Regional Climate Models (RCMs), the Eta-MIROC5 showed minor changes in the components of the hydrological cycle. This study suggests that Global Circulation Models represent an additional uncertainty, which should be accounted for in the climate change impact assessment.Instituto de Pesquisas Ambientais em Bacias Hidrográficas2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2022000100300Revista Ambiente & Água v.17 n.1 2022reponame:Revista Ambiente & Águainstname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)instacron:IPABHI10.4136/ambi-agua.2753info:eu-repo/semantics/openAccessCarvalho,Vinícius Siqueira OliveiraAlvarenga,Lívia AlvesMelo,Pâmela AparecidaTomasella,JavierMello,Carlos Rogério deMartins,Minella Alveseng2022-02-15T00:00:00Zoai:scielo:S1980-993X2022000100300Revistahttp://www.ambi-agua.net/PUBhttps://old.scielo.br/oai/scielo-oai.php||ambi.agua@gmail.com1980-993X1980-993Xopendoar:2022-02-15T00:00Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)false |
dc.title.none.fl_str_mv |
Climate change impact assessment in a tropical headwater basin |
title |
Climate change impact assessment in a tropical headwater basin |
spellingShingle |
Climate change impact assessment in a tropical headwater basin Carvalho,Vinícius Siqueira Oliveira climate changes RCP4.5 RCP8.5 VIC model |
title_short |
Climate change impact assessment in a tropical headwater basin |
title_full |
Climate change impact assessment in a tropical headwater basin |
title_fullStr |
Climate change impact assessment in a tropical headwater basin |
title_full_unstemmed |
Climate change impact assessment in a tropical headwater basin |
title_sort |
Climate change impact assessment in a tropical headwater basin |
author |
Carvalho,Vinícius Siqueira Oliveira |
author_facet |
Carvalho,Vinícius Siqueira Oliveira Alvarenga,Lívia Alves Melo,Pâmela Aparecida Tomasella,Javier Mello,Carlos Rogério de Martins,Minella Alves |
author_role |
author |
author2 |
Alvarenga,Lívia Alves Melo,Pâmela Aparecida Tomasella,Javier Mello,Carlos Rogério de Martins,Minella Alves |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Carvalho,Vinícius Siqueira Oliveira Alvarenga,Lívia Alves Melo,Pâmela Aparecida Tomasella,Javier Mello,Carlos Rogério de Martins,Minella Alves |
dc.subject.por.fl_str_mv |
climate changes RCP4.5 RCP8.5 VIC model |
topic |
climate changes RCP4.5 RCP8.5 VIC model |
description |
Abstract Changes in precipitation and air temperature may produce different impacts on the hydrological regime, compromising water supply. This study focuses on climate change impacts in the Verde River Basin (VRB), a tropical headwater basin in southeast Brazil, located in the state of Minas Gerais. The Variable Infiltration Capacity model (VIC) was calibrated and validated in the Verde River Basin. The downscaling (Eta Regional Climate Model, at 20-km resolution) of three Global Circulation Models (CanESM2, HadGEM2-ES and MIROC5) were used to drive the VIC for a historical baseline (1961-2005) and three time-slices (2011-2040, 2041-2070 and 2071-2099), under RCPs 4.5 and 8.5 scenarios. The scenarios were used as input in the hydrological model after bias correction. The hydrological model (VIC) showed satisfactory statistical performance in calibration and validation, with CNS varying from 0.77 to 0.85 for daily and monthly discharges; however, it overestimated some peak flows and underestimated the recession flows. Multi-model ensemble means predict increases of the minimum and maximum monthly average temperature for the investigated area at the end of the century. The Eta-CanESM2 indicated greater warming, mainly for RCP8.5 at the end the century, whereas Eta-HadGEM2-ES showed higher reduction in the precipitation for RCP4.5 at the beginning of the century and for RCP8.5 at the end the century, negatively impacting the evapotranspiration and discharge. Among the Regional Climate Models (RCMs), the Eta-MIROC5 showed minor changes in the components of the hydrological cycle. This study suggests that Global Circulation Models represent an additional uncertainty, which should be accounted for in the climate change impact assessment. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2022000100300 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2022000100300 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.4136/ambi-agua.2753 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas |
publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas |
dc.source.none.fl_str_mv |
Revista Ambiente & Água v.17 n.1 2022 reponame:Revista Ambiente & Água instname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) instacron:IPABHI |
instname_str |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) |
instacron_str |
IPABHI |
institution |
IPABHI |
reponame_str |
Revista Ambiente & Água |
collection |
Revista Ambiente & Água |
repository.name.fl_str_mv |
Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) |
repository.mail.fl_str_mv |
||ambi.agua@gmail.com |
_version_ |
1752129751750803456 |