Integration of treatment technologies with Fenton reagent for laboratory effluent remediation

Detalhes bibliográficos
Autor(a) principal: Pereira,Chrystopher Allan Miranda
Data de Publicação: 2018
Outros Autores: Brito,Núbia Natália
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Ambiente & Água
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309
Resumo: Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC.
id IPABHI-1_c48d4cf3069523a5cc3179a5cdda0275
oai_identifier_str oai:scielo:S1980-993X2018000500309
network_acronym_str IPABHI-1
network_name_str Revista Ambiente & Água
repository_id_str
spelling Integration of treatment technologies with Fenton reagent for laboratory effluent remediationcoagulation/flocculationcosmeticstextile dyes.Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC.Instituto de Pesquisas Ambientais em Bacias Hidrográficas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309Revista Ambiente & Água v.13 n.5 2018reponame:Revista Ambiente & Águainstname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)instacron:IPABHI10.4136/ambi-agua.2243info:eu-repo/semantics/openAccessPereira,Chrystopher Allan MirandaBrito,Núbia Natáliaeng2018-10-18T00:00:00Zoai:scielo:S1980-993X2018000500309Revistahttp://www.ambi-agua.net/PUBhttps://old.scielo.br/oai/scielo-oai.php||ambi.agua@gmail.com1980-993X1980-993Xopendoar:2018-10-18T00:00Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)false
dc.title.none.fl_str_mv Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
title Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
spellingShingle Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
Pereira,Chrystopher Allan Miranda
coagulation/flocculation
cosmetics
textile dyes.
title_short Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
title_full Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
title_fullStr Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
title_full_unstemmed Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
title_sort Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
author Pereira,Chrystopher Allan Miranda
author_facet Pereira,Chrystopher Allan Miranda
Brito,Núbia Natália
author_role author
author2 Brito,Núbia Natália
author2_role author
dc.contributor.author.fl_str_mv Pereira,Chrystopher Allan Miranda
Brito,Núbia Natália
dc.subject.por.fl_str_mv coagulation/flocculation
cosmetics
textile dyes.
topic coagulation/flocculation
cosmetics
textile dyes.
description Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.4136/ambi-agua.2243
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
dc.source.none.fl_str_mv Revista Ambiente & Água v.13 n.5 2018
reponame:Revista Ambiente & Água
instname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
instacron:IPABHI
instname_str Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
instacron_str IPABHI
institution IPABHI
reponame_str Revista Ambiente & Água
collection Revista Ambiente & Água
repository.name.fl_str_mv Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)
repository.mail.fl_str_mv ||ambi.agua@gmail.com
_version_ 1752129750445326336