Integration of treatment technologies with Fenton reagent for laboratory effluent remediation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Ambiente & Água |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309 |
Resumo: | Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC. |
id |
IPABHI-1_c48d4cf3069523a5cc3179a5cdda0275 |
---|---|
oai_identifier_str |
oai:scielo:S1980-993X2018000500309 |
network_acronym_str |
IPABHI-1 |
network_name_str |
Revista Ambiente & Água |
repository_id_str |
|
spelling |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediationcoagulation/flocculationcosmeticstextile dyes.Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC.Instituto de Pesquisas Ambientais em Bacias Hidrográficas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309Revista Ambiente & Água v.13 n.5 2018reponame:Revista Ambiente & Águainstname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)instacron:IPABHI10.4136/ambi-agua.2243info:eu-repo/semantics/openAccessPereira,Chrystopher Allan MirandaBrito,Núbia Natáliaeng2018-10-18T00:00:00Zoai:scielo:S1980-993X2018000500309Revistahttp://www.ambi-agua.net/PUBhttps://old.scielo.br/oai/scielo-oai.php||ambi.agua@gmail.com1980-993X1980-993Xopendoar:2018-10-18T00:00Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI)false |
dc.title.none.fl_str_mv |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
title |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
spellingShingle |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation Pereira,Chrystopher Allan Miranda coagulation/flocculation cosmetics textile dyes. |
title_short |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
title_full |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
title_fullStr |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
title_full_unstemmed |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
title_sort |
Integration of treatment technologies with Fenton reagent for laboratory effluent remediation |
author |
Pereira,Chrystopher Allan Miranda |
author_facet |
Pereira,Chrystopher Allan Miranda Brito,Núbia Natália |
author_role |
author |
author2 |
Brito,Núbia Natália |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pereira,Chrystopher Allan Miranda Brito,Núbia Natália |
dc.subject.por.fl_str_mv |
coagulation/flocculation cosmetics textile dyes. |
topic |
coagulation/flocculation cosmetics textile dyes. |
description |
Abstract This study investigated of the potential value of the integration of the coagulation/flocculation, Advanced Oxidation Processes (AOP) (Fenton reagent) and slow sand filtration technologies, with the aim of treating laboratory wastewater. The treatment system was designed in laboratory scale through coagulation/flocculation. It involved the use of Jar Test equipment with a sequence of two rotational phases: fast mixes to 300 rpm for 20 seconds and slow mixes to 30 rpm for 6 minutes and 10 seconds, with the addition of anionic polymer and sedimentation for 60 minutes at ambient temperature. In the treatment via Fenton reagent, two rotational phases were used: rapid mixing at 300 rpm for 20 seconds with the addition of iron (Fe2+) and slow mixing at 30 rpm for 6 minutes and 10 seconds with the addition of hydrogen peroxide, followed by 60 minutes of sedimentation at ambient temperature. A cylindrical tank of polyvinyl chloride, sands and non-woven synthetic fabrics were used in the slow filtration. The filtration rate adopted was 3 m3 m-2 d-1 with a hydraulic retention time of 264 minutes. The best concentrations of chemical reagents used in the treatments were: 0.80 mg L-1 of polymeric anionic, 200.00 mg L-1 of H2O2 and 13.00 mg L-1 of total soluble iron. The integration of the treatment technologies made it possible to achieve a removal rate of 75.27% of COD and 94.12% of total phenols. Furthermore, the conjugation of the processes allowed the removal of 87.58% of TOC. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.4136/ambi-agua.2243 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas |
publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas |
dc.source.none.fl_str_mv |
Revista Ambiente & Água v.13 n.5 2018 reponame:Revista Ambiente & Água instname:Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) instacron:IPABHI |
instname_str |
Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) |
instacron_str |
IPABHI |
institution |
IPABHI |
reponame_str |
Revista Ambiente & Água |
collection |
Revista Ambiente & Água |
repository.name.fl_str_mv |
Revista Ambiente & Água - Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHI) |
repository.mail.fl_str_mv |
||ambi.agua@gmail.com |
_version_ |
1752129750445326336 |