Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Título da fonte: | Repositório Institucional do IPEN |
Texto Completo: | http://repositorio.ipen.br/handle/123456789/32334 |
Resumo: | The breast cancer is the most incident cancer in women. Evaluation of hormone receptors expression plays an important role to outline treatment strategies. FTIR spectroscopy imaging may be employed as an additional technique, providing extra information to help physicians. In this work, estrogen and progesterone receptors expression were evaluated using tumors biopsies from human cell lines inoculated in mice. FTIR images were collect from histological sections, and six machine learning models were applied and assessed. Xtreme gradient boost and Linear Discriminant Analysis presented the best accuracies results, indicating to be potential models for breast cancer classification tasks. |
id |
IPEN_0fa9134278c24fbeab3f832bd0d923fd |
---|---|
oai_identifier_str |
oai:repositorio.ipen.br:123456789/32334 |
network_acronym_str |
IPEN |
network_name_str |
Repositório Institucional do IPEN |
repository_id_str |
4510 |
spelling |
2021-11-12T10:59:23Z2021-11-12T10:59:23ZMay 31 - June 2, 2021http://repositorio.ipen.br/handle/123456789/3233410.1109/SBFOTONIOPC50774.2021.94619460000-0001-7404-96060000-0002-0029-7313The breast cancer is the most incident cancer in women. Evaluation of hormone receptors expression plays an important role to outline treatment strategies. FTIR spectroscopy imaging may be employed as an additional technique, providing extra information to help physicians. In this work, estrogen and progesterone receptors expression were evaluated using tumors biopsies from human cell lines inoculated in mice. FTIR images were collect from histological sections, and six machine learning models were applied and assessed. Xtreme gradient boost and Linear Discriminant Analysis presented the best accuracies results, indicating to be potential models for breast cancer classification tasks.Submitted by Pedro Silva Filho (pfsilva@ipen.br) on 2021-11-12T10:59:23Z No. of bitstreams: 1 28102.pdf: 316112 bytes, checksum: c79d2fcfb58a82462cbca62ddb656194 (MD5)Made available in DSpace on 2021-11-12T10:59:23Z (GMT). No. of bitstreams: 1 28102.pdf: 316112 bytes, checksum: c79d2fcfb58a82462cbca62ddb656194 (MD5)Funda????o de Amparo ?? Pesquisa do Estado de S??o Paulo (FAPESP)Coordena????o de Aperfei??oamento de Pessoal de N??vel Superior (CAPES)Conselho Nacional de Desenvolvimento Cient??fico e Tecnol??gico (CNPq)FAPESP: 05/51689-2; 17/50332-0CAPES: PROCAD 88881.068505/2014-01; 001CNPq: INCT-465763/2014-6; PQ-309902/2017-7; 142229/2019-9IEEEmammary glandsneoplasmsfourier transformationimagesmachine learninghormonesreceptorsEvaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSBFOTON IOPCIPiscataway, NJ, USAOnline1520984111446412099693600600600600600VALLE, MATHEUS delSANTOS, MOISES O. dosSANTOS, SOFIA N. dosBERNARDES, EMERSON S.ZEZELL, DENISE M.SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN281022021ZEZELL, DENISE M.BERNARDES, EMERSON S.SANTOS, SOFIA N. dosSANTOS, MOISES O. dosVALLE, MATHEUS del21-11Proceedings6931209914464841115209ZEZELL, DENISE M.:693:920:NBERNARDES, EMERSON S.:12099:110:NSANTOS, SOFIA N. dos:14464:110:NSANTOS, MOISES O. dos:8411:920:NVALLE, MATHEUS del:15209:920:SLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/32334/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL28102.pdf28102.pdfapplication/pdf316112http://repositorio.ipen.br/bitstream/123456789/32334/1/28102.pdfc79d2fcfb58a82462cbca62ddb656194MD51123456789/323342021-12-02 18:00:40.73oai:repositorio.ipen.br:123456789/32334Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102021-12-02T18:00:40Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false |
dc.title.pt_BR.fl_str_mv |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
title |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
spellingShingle |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images VALLE, MATHEUS del mammary glands neoplasms fourier transformation images machine learning hormones receptors |
title_short |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
title_full |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
title_fullStr |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
title_full_unstemmed |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
title_sort |
Evaluation of machine learning models for the classification of breast cancer hormone receptors using micro-FTIR images |
author |
VALLE, MATHEUS del |
author_facet |
VALLE, MATHEUS del SANTOS, MOISES O. dos SANTOS, SOFIA N. dos BERNARDES, EMERSON S. ZEZELL, DENISE M. SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE |
author_role |
author |
author2 |
SANTOS, MOISES O. dos SANTOS, SOFIA N. dos BERNARDES, EMERSON S. ZEZELL, DENISE M. SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
VALLE, MATHEUS del SANTOS, MOISES O. dos SANTOS, SOFIA N. dos BERNARDES, EMERSON S. ZEZELL, DENISE M. SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE |
dc.subject.por.fl_str_mv |
mammary glands neoplasms fourier transformation images machine learning hormones receptors |
topic |
mammary glands neoplasms fourier transformation images machine learning hormones receptors |
description |
The breast cancer is the most incident cancer in women. Evaluation of hormone receptors expression plays an important role to outline treatment strategies. FTIR spectroscopy imaging may be employed as an additional technique, providing extra information to help physicians. In this work, estrogen and progesterone receptors expression were evaluated using tumors biopsies from human cell lines inoculated in mice. FTIR images were collect from histological sections, and six machine learning models were applied and assessed. Xtreme gradient boost and Linear Discriminant Analysis presented the best accuracies results, indicating to be potential models for breast cancer classification tasks. |
publishDate |
2021 |
dc.date.evento.pt_BR.fl_str_mv |
May 31 - June 2, 2021 |
dc.date.accessioned.fl_str_mv |
2021-11-12T10:59:23Z |
dc.date.available.fl_str_mv |
2021-11-12T10:59:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ipen.br/handle/123456789/32334 |
dc.identifier.doi.pt_BR.fl_str_mv |
10.1109/SBFOTONIOPC50774.2021.9461946 |
dc.identifier.orcid.pt_BR.fl_str_mv |
0000-0001-7404-9606 0000-0002-0029-7313 |
url |
http://repositorio.ipen.br/handle/123456789/32334 |
identifier_str_mv |
10.1109/SBFOTONIOPC50774.2021.9461946 0000-0001-7404-9606 0000-0002-0029-7313 |
dc.relation.authority.fl_str_mv |
15209 8411 14464 12099 693 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.coverage.pt_BR.fl_str_mv |
I |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do IPEN instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN) instacron:IPEN |
instname_str |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
instacron_str |
IPEN |
institution |
IPEN |
reponame_str |
Repositório Institucional do IPEN |
collection |
Repositório Institucional do IPEN |
bitstream.url.fl_str_mv |
http://repositorio.ipen.br/bitstream/123456789/32334/2/license.txt http://repositorio.ipen.br/bitstream/123456789/32334/1/28102.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 c79d2fcfb58a82462cbca62ddb656194 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
repository.mail.fl_str_mv |
bibl@ipen.br |
_version_ |
1767254254024654848 |