Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Título da fonte: | Repositório Institucional do IPEN |
Texto Completo: | http://repositorio.ipen.br/handle/123456789/30735 |
Resumo: | This work presents the results of the computational simulations of the consequences of a severe accident in Angra 2 nuclear power plant. The severe accident was supposed to be caused by a rupture of 380cm2 in the primary reactor coolant system resulting in loss of coolant. Since the area of the rupture is quite smaller than the total flow area of the pipe of the primary coolant system, 4418cm2, the accident is classified as a small break loss of coolant accident. However, this rupture by itself would not bring the system about a severe accident, which must involve a considerable damage in the nuclear core. Thus, some boundary conditions were added to the problem in order to set a scenario of this kind of accident, which was simulated by means of the MELCOR code. The results obtained by this code show that the release of the radionuclide to the environment starts at the opening of the containment relief valve, and this valve, in turn, opens when the containment pressure reaches 7bar, at 168 hours after the break of the pipe of the coolant system, according to the simulation. The program used for calculation of the release of the radionuclides to the surrounding region of the nuclear plant was the CALMET/CALPUFF code, so that the atmospheric and transport model were elaborated for this code. A source term was used in order to carry out an analysis of the protective actions in the emergency planning zones by means dose calculation for individuals of the public, and it was based on two different scenarios: first scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 2h simulation and second scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 168h of simulation. |
id |
IPEN_1ce167e04484a2fbf7890a400559a87e |
---|---|
oai_identifier_str |
oai:repositorio.ipen.br:123456789/30735 |
network_acronym_str |
IPEN |
network_name_str |
Repositório Institucional do IPEN |
repository_id_str |
4510 |
spelling |
2020-01-15T19:21:06Z2020-01-15T19:21:06ZOctober 21-25, 2019http://repositorio.ipen.br/handle/123456789/307350000-0001-9544-4509This work presents the results of the computational simulations of the consequences of a severe accident in Angra 2 nuclear power plant. The severe accident was supposed to be caused by a rupture of 380cm2 in the primary reactor coolant system resulting in loss of coolant. Since the area of the rupture is quite smaller than the total flow area of the pipe of the primary coolant system, 4418cm2, the accident is classified as a small break loss of coolant accident. However, this rupture by itself would not bring the system about a severe accident, which must involve a considerable damage in the nuclear core. Thus, some boundary conditions were added to the problem in order to set a scenario of this kind of accident, which was simulated by means of the MELCOR code. The results obtained by this code show that the release of the radionuclide to the environment starts at the opening of the containment relief valve, and this valve, in turn, opens when the containment pressure reaches 7bar, at 168 hours after the break of the pipe of the coolant system, according to the simulation. The program used for calculation of the release of the radionuclides to the surrounding region of the nuclear plant was the CALMET/CALPUFF code, so that the atmospheric and transport model were elaborated for this code. A source term was used in order to carry out an analysis of the protective actions in the emergency planning zones by means dose calculation for individuals of the public, and it was based on two different scenarios: first scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 2h simulation and second scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 168h of simulation.Submitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2020-01-15T19:21:06Z No. of bitstreams: 1 26388.pdf: 1383114 bytes, checksum: de472db061adf40f94e76b2b801dbfbc (MD5)Made available in DSpace on 2020-01-15T19:21:06Z (GMT). No. of bitstreams: 1 26388.pdf: 1383114 bytes, checksum: de472db061adf40f94e76b2b801dbfbc (MD5)5862-5876Associa????o Brasileira de Energia Nuclearangra-2 reactorboundary conditionsc codesemergency plansfission product releaseloss of coolantm codesradiation dosesradiation protectionradioactive materialsradioactivityreactor accident simulationsevere accidentsAnalysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plantinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de JaneiroSantos, SP149386057202600600600AGUIAR, ANDRE S.LEE, SEUNG M.SABUNDJIAN, G.INTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN263882019SABUNDJIAN, G.LEE, SEUNG M.AGUIAR, ANDRE S.20-01Proceedings202605714938SABUNDJIAN, G.:202:420:NLEE, SEUNG M.:6057:420:NAGUIAR, ANDRE S.:14938:-1:SORIGINAL26388.pdf26388.pdfapplication/pdf1383114http://repositorio.ipen.br/bitstream/123456789/30735/1/26388.pdfde472db061adf40f94e76b2b801dbfbcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/30735/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/307352020-04-12 23:29:23.783oai:repositorio.ipen.br:123456789/30735Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102020-04-12T23:29:23Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false |
dc.title.pt_BR.fl_str_mv |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
title |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
spellingShingle |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant AGUIAR, ANDRE S. angra-2 reactor boundary conditions c codes emergency plans fission product release loss of coolant m codes radiation doses radiation protection radioactive materials radioactivity reactor accident simulation severe accidents |
title_short |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
title_full |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
title_fullStr |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
title_full_unstemmed |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
title_sort |
Analysis of the protective actions in the Emergency Planning Zones (EPZs) in the Angra dos Reis region through the calculation of the dose for public individuals due to a severe accident at the Angra 2 Nuclear Plant |
author |
AGUIAR, ANDRE S. |
author_facet |
AGUIAR, ANDRE S. LEE, SEUNG M. SABUNDJIAN, G. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author_role |
author |
author2 |
LEE, SEUNG M. SABUNDJIAN, G. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
AGUIAR, ANDRE S. LEE, SEUNG M. SABUNDJIAN, G. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
dc.subject.por.fl_str_mv |
angra-2 reactor boundary conditions c codes emergency plans fission product release loss of coolant m codes radiation doses radiation protection radioactive materials radioactivity reactor accident simulation severe accidents |
topic |
angra-2 reactor boundary conditions c codes emergency plans fission product release loss of coolant m codes radiation doses radiation protection radioactive materials radioactivity reactor accident simulation severe accidents |
description |
This work presents the results of the computational simulations of the consequences of a severe accident in Angra 2 nuclear power plant. The severe accident was supposed to be caused by a rupture of 380cm2 in the primary reactor coolant system resulting in loss of coolant. Since the area of the rupture is quite smaller than the total flow area of the pipe of the primary coolant system, 4418cm2, the accident is classified as a small break loss of coolant accident. However, this rupture by itself would not bring the system about a severe accident, which must involve a considerable damage in the nuclear core. Thus, some boundary conditions were added to the problem in order to set a scenario of this kind of accident, which was simulated by means of the MELCOR code. The results obtained by this code show that the release of the radionuclide to the environment starts at the opening of the containment relief valve, and this valve, in turn, opens when the containment pressure reaches 7bar, at 168 hours after the break of the pipe of the coolant system, according to the simulation. The program used for calculation of the release of the radionuclides to the surrounding region of the nuclear plant was the CALMET/CALPUFF code, so that the atmospheric and transport model were elaborated for this code. A source term was used in order to carry out an analysis of the protective actions in the emergency planning zones by means dose calculation for individuals of the public, and it was based on two different scenarios: first scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 2h simulation and second scenario, release of the total activity to the atmosphere of Xe, Cs, Ba and Te, after 168h of simulation. |
publishDate |
2020 |
dc.date.evento.pt_BR.fl_str_mv |
October 21-25, 2019 |
dc.date.accessioned.fl_str_mv |
2020-01-15T19:21:06Z |
dc.date.available.fl_str_mv |
2020-01-15T19:21:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ipen.br/handle/123456789/30735 |
dc.identifier.orcid.pt_BR.fl_str_mv |
0000-0001-9544-4509 |
url |
http://repositorio.ipen.br/handle/123456789/30735 |
identifier_str_mv |
0000-0001-9544-4509 |
dc.relation.authority.fl_str_mv |
14938 6057 202 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5862-5876 |
dc.coverage.pt_BR.fl_str_mv |
I |
dc.publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do IPEN instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN) instacron:IPEN |
instname_str |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
instacron_str |
IPEN |
institution |
IPEN |
reponame_str |
Repositório Institucional do IPEN |
collection |
Repositório Institucional do IPEN |
bitstream.url.fl_str_mv |
http://repositorio.ipen.br/bitstream/123456789/30735/1/26388.pdf http://repositorio.ipen.br/bitstream/123456789/30735/2/license.txt |
bitstream.checksum.fl_str_mv |
de472db061adf40f94e76b2b801dbfbc 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
repository.mail.fl_str_mv |
bibl@ipen.br |
_version_ |
1767254250708008960 |