Recovery of 131I from fission 99Mo production process by distillation method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Título da fonte: | Repositório Institucional do IPEN |
Texto Completo: | http://repositorio.ipen.br/handle/123456789/28307 |
Resumo: | The results of one of the recovery stages of 131I as a byproduct of the 99Mo fission production process are presented in this work. A modified wet-distillation apparatus was used for iodide purification and some work parameters were tested. The assays included iodide anion eluent, concentration of H2SO4, H2O2, the catalyst effect of MoO3, temperature and time process. The results of eluting anions demonstrated lower recovery of 131I using nitrate salt. The sulfate solution and its respective acid (H2SO4) at concentration 1.6 M, presented better results. Hydrogen peroxide was used as a main oxidant of the ions iodide, the experiments realized with 6 mL of H2O2 3% showed higher recovery than assays prepared with H2O2 higher and lower amount. Molybdenum oxide was evaluated as catalyst of iodine in solution; however, the results did not demonstrate an advantage in relation to its absence. In addition, the recovery of iodide was delayed at initial periods of the process in presence of the catalyst, leading to an increase on time process. Temperature decrease of distillation solution from 80 to 50 ??C showed advantageous since the recovery yields were similar beside a lower wet drag to trap solution. Time distillation was carried out at least four hours with sampling each hour; the best times were between 1 and 2 hours. Shorter periods of distillation avoid dilution of the capture solution on the further recovery process. Several parameters were studied and it was possible to set up system that provided 131I recovery around 50% yield. |
id |
IPEN_4022e7c771bf239bae791fb18184d972 |
---|---|
oai_identifier_str |
oai:repositorio.ipen.br:123456789/28307 |
network_acronym_str |
IPEN |
network_name_str |
Repositório Institucional do IPEN |
repository_id_str |
4510 |
spelling |
2018-01-12T13:11:07Z2018-01-12T13:11:07ZOctober 22-27, 2017http://repositorio.ipen.br/handle/123456789/28307The results of one of the recovery stages of 131I as a byproduct of the 99Mo fission production process are presented in this work. A modified wet-distillation apparatus was used for iodide purification and some work parameters were tested. The assays included iodide anion eluent, concentration of H2SO4, H2O2, the catalyst effect of MoO3, temperature and time process. The results of eluting anions demonstrated lower recovery of 131I using nitrate salt. The sulfate solution and its respective acid (H2SO4) at concentration 1.6 M, presented better results. Hydrogen peroxide was used as a main oxidant of the ions iodide, the experiments realized with 6 mL of H2O2 3% showed higher recovery than assays prepared with H2O2 higher and lower amount. Molybdenum oxide was evaluated as catalyst of iodine in solution; however, the results did not demonstrate an advantage in relation to its absence. In addition, the recovery of iodide was delayed at initial periods of the process in presence of the catalyst, leading to an increase on time process. Temperature decrease of distillation solution from 80 to 50 ??C showed advantageous since the recovery yields were similar beside a lower wet drag to trap solution. Time distillation was carried out at least four hours with sampling each hour; the best times were between 1 and 2 hours. Shorter periods of distillation avoid dilution of the capture solution on the further recovery process. Several parameters were studied and it was possible to set up system that provided 131I recovery around 50% yield.Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2018-01-12T13:11:07Z No. of bitstreams: 1 24142.pdf: 289022 bytes, checksum: 0ef5f09c9d86ba5b4fd47417fcbfca74 (MD5)Made available in DSpace on 2018-01-12T13:11:07Z (GMT). No. of bitstreams: 1 24142.pdf: 289022 bytes, checksum: 0ef5f09c9d86ba5b4fd47417fcbfca74 (MD5)Associa????o Brasileira de Energia NuclearRecovery of 131I from fission 99Mo production process by distillation methodinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de Janeiro, RJBelo Horizonte, MGDAMASCENO, MARCOS O.BALOGH, TATIANA S.FORBICINI, CHRISTINA A.L.G. de O.INTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN241422017DAMASCENO, MARCOS O.BALOGH, TATIANA S.FORBICINI, CHRISTINA A.L.G. de O.18-01Proceedings970314431647DAMASCENO, MARCOS O.:9703:520:SBALOGH, TATIANA S.:14431:-1:NFORBICINI, CHRISTINA A.L.G. DE O.:647:520:NORIGINAL24142.pdf24142.pdfapplication/pdf289022http://repositorio.ipen.br/bitstream/123456789/28307/1/24142.pdf0ef5f09c9d86ba5b4fd47417fcbfca74MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/28307/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/283072018-01-12 13:11:07.285oai:repositorio.ipen.br:123456789/28307Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102018-01-12T13:11:07Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false |
dc.title.pt_BR.fl_str_mv |
Recovery of 131I from fission 99Mo production process by distillation method |
title |
Recovery of 131I from fission 99Mo production process by distillation method |
spellingShingle |
Recovery of 131I from fission 99Mo production process by distillation method DAMASCENO, MARCOS O. |
title_short |
Recovery of 131I from fission 99Mo production process by distillation method |
title_full |
Recovery of 131I from fission 99Mo production process by distillation method |
title_fullStr |
Recovery of 131I from fission 99Mo production process by distillation method |
title_full_unstemmed |
Recovery of 131I from fission 99Mo production process by distillation method |
title_sort |
Recovery of 131I from fission 99Mo production process by distillation method |
author |
DAMASCENO, MARCOS O. |
author_facet |
DAMASCENO, MARCOS O. BALOGH, TATIANA S. FORBICINI, CHRISTINA A.L.G. de O. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author_role |
author |
author2 |
BALOGH, TATIANA S. FORBICINI, CHRISTINA A.L.G. de O. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
DAMASCENO, MARCOS O. BALOGH, TATIANA S. FORBICINI, CHRISTINA A.L.G. de O. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
description |
The results of one of the recovery stages of 131I as a byproduct of the 99Mo fission production process are presented in this work. A modified wet-distillation apparatus was used for iodide purification and some work parameters were tested. The assays included iodide anion eluent, concentration of H2SO4, H2O2, the catalyst effect of MoO3, temperature and time process. The results of eluting anions demonstrated lower recovery of 131I using nitrate salt. The sulfate solution and its respective acid (H2SO4) at concentration 1.6 M, presented better results. Hydrogen peroxide was used as a main oxidant of the ions iodide, the experiments realized with 6 mL of H2O2 3% showed higher recovery than assays prepared with H2O2 higher and lower amount. Molybdenum oxide was evaluated as catalyst of iodine in solution; however, the results did not demonstrate an advantage in relation to its absence. In addition, the recovery of iodide was delayed at initial periods of the process in presence of the catalyst, leading to an increase on time process. Temperature decrease of distillation solution from 80 to 50 ??C showed advantageous since the recovery yields were similar beside a lower wet drag to trap solution. Time distillation was carried out at least four hours with sampling each hour; the best times were between 1 and 2 hours. Shorter periods of distillation avoid dilution of the capture solution on the further recovery process. Several parameters were studied and it was possible to set up system that provided 131I recovery around 50% yield. |
publishDate |
2018 |
dc.date.evento.pt_BR.fl_str_mv |
October 22-27, 2017 |
dc.date.accessioned.fl_str_mv |
2018-01-12T13:11:07Z |
dc.date.available.fl_str_mv |
2018-01-12T13:11:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ipen.br/handle/123456789/28307 |
url |
http://repositorio.ipen.br/handle/123456789/28307 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.coverage.pt_BR.fl_str_mv |
I |
dc.publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do IPEN instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN) instacron:IPEN |
instname_str |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
instacron_str |
IPEN |
institution |
IPEN |
reponame_str |
Repositório Institucional do IPEN |
collection |
Repositório Institucional do IPEN |
bitstream.url.fl_str_mv |
http://repositorio.ipen.br/bitstream/123456789/28307/1/24142.pdf http://repositorio.ipen.br/bitstream/123456789/28307/2/license.txt |
bitstream.checksum.fl_str_mv |
0ef5f09c9d86ba5b4fd47417fcbfca74 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
repository.mail.fl_str_mv |
bibl@ipen.br |
_version_ |
1767254243776921600 |