Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Título da fonte: | Repositório Institucional do IPEN |
Texto Completo: | http://repositorio.ipen.br/handle/123456789/30561 |
Resumo: | Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization. |
id |
IPEN_6698943f09a536941a27f403e6af9c0d |
---|---|
oai_identifier_str |
oai:repositorio.ipen.br:123456789/30561 |
network_acronym_str |
IPEN |
network_name_str |
Repositório Institucional do IPEN |
repository_id_str |
4510 |
spelling |
2020-01-06T11:57:35Z2020-01-06T11:57:35ZOctober 21-25, 2019http://repositorio.ipen.br/handle/123456789/305610000-0003-3010-96910000-0002-4098-0272Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.Submitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2020-01-06T11:57:35Z No. of bitstreams: 1 26211.pdf: 2150872 bytes, checksum: acdadb8bbf2de9dfd21f03f5db44a1c6 (MD5)Made available in DSpace on 2020-01-06T11:57:35Z (GMT). No. of bitstreams: 1 26211.pdf: 2150872 bytes, checksum: acdadb8bbf2de9dfd21f03f5db44a1c6 (MD5)1278-1283Associa????o Brasileira de Energia Nuclearartificial intelligencecomputer architecturegamma spectroscopyhigh-purity ge detectorsneural networksradioactive waste managementradioactive wastesradioisotopessealed sourcesComparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de JaneiroSantos, SP14881734826600600600OTERO, ANDRE G.L.POTIENS JUNIOR, ADEMAR J.CALZETA, EDUARDO P.MARUMO, JULIO T.INTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN262112019MARUMO, JULIO T.POTIENS JUNIOR, ADEMAR J.OTERO, ANDRE G.L.20-01Proceedings82673414881MARUMO, JULIO T.:826:450:NPOTIENS JUNIOR, ADEMAR J.:734:1120:NOTERO, ANDRE G.L.:14881:1120:SORIGINAL26211.pdf26211.pdfapplication/pdf2150872http://repositorio.ipen.br/bitstream/123456789/30561/1/26211.pdfacdadb8bbf2de9dfd21f03f5db44a1c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/30561/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/305612020-04-05 18:39:45.337oai:repositorio.ipen.br:123456789/30561Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102020-04-05T18:39:45Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false |
dc.title.pt_BR.fl_str_mv |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
title |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
spellingShingle |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization OTERO, ANDRE G.L. artificial intelligence computer architecture gamma spectroscopy high-purity ge detectors neural networks radioactive waste management radioactive wastes radioisotopes sealed sources |
title_short |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
title_full |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
title_fullStr |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
title_full_unstemmed |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
title_sort |
Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization |
author |
OTERO, ANDRE G.L. |
author_facet |
OTERO, ANDRE G.L. POTIENS JUNIOR, ADEMAR J. CALZETA, EDUARDO P. MARUMO, JULIO T. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author_role |
author |
author2 |
POTIENS JUNIOR, ADEMAR J. CALZETA, EDUARDO P. MARUMO, JULIO T. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
OTERO, ANDRE G.L. POTIENS JUNIOR, ADEMAR J. CALZETA, EDUARDO P. MARUMO, JULIO T. INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE |
dc.subject.por.fl_str_mv |
artificial intelligence computer architecture gamma spectroscopy high-purity ge detectors neural networks radioactive waste management radioactive wastes radioisotopes sealed sources |
topic |
artificial intelligence computer architecture gamma spectroscopy high-purity ge detectors neural networks radioactive waste management radioactive wastes radioisotopes sealed sources |
description |
Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization. |
publishDate |
2020 |
dc.date.evento.pt_BR.fl_str_mv |
October 21-25, 2019 |
dc.date.accessioned.fl_str_mv |
2020-01-06T11:57:35Z |
dc.date.available.fl_str_mv |
2020-01-06T11:57:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ipen.br/handle/123456789/30561 |
dc.identifier.orcid.pt_BR.fl_str_mv |
0000-0003-3010-9691 0000-0002-4098-0272 |
url |
http://repositorio.ipen.br/handle/123456789/30561 |
identifier_str_mv |
0000-0003-3010-9691 0000-0002-4098-0272 |
dc.relation.authority.fl_str_mv |
14881 734 826 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1278-1283 |
dc.coverage.pt_BR.fl_str_mv |
I |
dc.publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
publisher.none.fl_str_mv |
Associa????o Brasileira de Energia Nuclear |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do IPEN instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN) instacron:IPEN |
instname_str |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
instacron_str |
IPEN |
institution |
IPEN |
reponame_str |
Repositório Institucional do IPEN |
collection |
Repositório Institucional do IPEN |
bitstream.url.fl_str_mv |
http://repositorio.ipen.br/bitstream/123456789/30561/1/26211.pdf http://repositorio.ipen.br/bitstream/123456789/30561/2/license.txt |
bitstream.checksum.fl_str_mv |
acdadb8bbf2de9dfd21f03f5db44a1c6 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
repository.mail.fl_str_mv |
bibl@ipen.br |
_version_ |
1767254249480126464 |