Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization

Detalhes bibliográficos
Autor(a) principal: OTERO, ANDRE G.L.
Data de Publicação: 2020
Outros Autores: POTIENS JUNIOR, ADEMAR J., CALZETA, EDUARDO P., MARUMO, JULIO T., INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
Tipo de documento: Artigo de conferência
Título da fonte: Repositório Institucional do IPEN
Texto Completo: http://repositorio.ipen.br/handle/123456789/30561
Resumo: Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.
id IPEN_6698943f09a536941a27f403e6af9c0d
oai_identifier_str oai:repositorio.ipen.br:123456789/30561
network_acronym_str IPEN
network_name_str Repositório Institucional do IPEN
repository_id_str 4510
spelling 2020-01-06T11:57:35Z2020-01-06T11:57:35ZOctober 21-25, 2019http://repositorio.ipen.br/handle/123456789/305610000-0003-3010-96910000-0002-4098-0272Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.Submitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2020-01-06T11:57:35Z No. of bitstreams: 1 26211.pdf: 2150872 bytes, checksum: acdadb8bbf2de9dfd21f03f5db44a1c6 (MD5)Made available in DSpace on 2020-01-06T11:57:35Z (GMT). No. of bitstreams: 1 26211.pdf: 2150872 bytes, checksum: acdadb8bbf2de9dfd21f03f5db44a1c6 (MD5)1278-1283Associa????o Brasileira de Energia Nuclearartificial intelligencecomputer architecturegamma spectroscopyhigh-purity ge detectorsneural networksradioactive waste managementradioactive wastesradioisotopessealed sourcesComparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de JaneiroSantos, SP14881734826600600600OTERO, ANDRE G.L.POTIENS JUNIOR, ADEMAR J.CALZETA, EDUARDO P.MARUMO, JULIO T.INTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN262112019MARUMO, JULIO T.POTIENS JUNIOR, ADEMAR J.OTERO, ANDRE G.L.20-01Proceedings82673414881MARUMO, JULIO T.:826:450:NPOTIENS JUNIOR, ADEMAR J.:734:1120:NOTERO, ANDRE G.L.:14881:1120:SORIGINAL26211.pdf26211.pdfapplication/pdf2150872http://repositorio.ipen.br/bitstream/123456789/30561/1/26211.pdfacdadb8bbf2de9dfd21f03f5db44a1c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/30561/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/305612020-04-05 18:39:45.337oai:repositorio.ipen.br:123456789/30561Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102020-04-05T18:39:45Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false
dc.title.pt_BR.fl_str_mv Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
title Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
spellingShingle Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
OTERO, ANDRE G.L.
artificial intelligence
computer architecture
gamma spectroscopy
high-purity ge detectors
neural networks
radioactive waste management
radioactive wastes
radioisotopes
sealed sources
title_short Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
title_full Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
title_fullStr Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
title_full_unstemmed Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
title_sort Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
author OTERO, ANDRE G.L.
author_facet OTERO, ANDRE G.L.
POTIENS JUNIOR, ADEMAR J.
CALZETA, EDUARDO P.
MARUMO, JULIO T.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author_role author
author2 POTIENS JUNIOR, ADEMAR J.
CALZETA, EDUARDO P.
MARUMO, JULIO T.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author2_role author
author
author
author
dc.contributor.author.fl_str_mv OTERO, ANDRE G.L.
POTIENS JUNIOR, ADEMAR J.
CALZETA, EDUARDO P.
MARUMO, JULIO T.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
dc.subject.por.fl_str_mv artificial intelligence
computer architecture
gamma spectroscopy
high-purity ge detectors
neural networks
radioactive waste management
radioactive wastes
radioisotopes
sealed sources
topic artificial intelligence
computer architecture
gamma spectroscopy
high-purity ge detectors
neural networks
radioactive waste management
radioactive wastes
radioisotopes
sealed sources
description Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.
publishDate 2020
dc.date.evento.pt_BR.fl_str_mv October 21-25, 2019
dc.date.accessioned.fl_str_mv 2020-01-06T11:57:35Z
dc.date.available.fl_str_mv 2020-01-06T11:57:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ipen.br/handle/123456789/30561
dc.identifier.orcid.pt_BR.fl_str_mv 0000-0003-3010-9691
0000-0002-4098-0272
url http://repositorio.ipen.br/handle/123456789/30561
identifier_str_mv 0000-0003-3010-9691
0000-0002-4098-0272
dc.relation.authority.fl_str_mv 14881
734
826
dc.relation.confidence.fl_str_mv 600
600
600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1278-1283
dc.coverage.pt_BR.fl_str_mv I
dc.publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IPEN
instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron:IPEN
instname_str Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron_str IPEN
institution IPEN
reponame_str Repositório Institucional do IPEN
collection Repositório Institucional do IPEN
bitstream.url.fl_str_mv http://repositorio.ipen.br/bitstream/123456789/30561/1/26211.pdf
http://repositorio.ipen.br/bitstream/123456789/30561/2/license.txt
bitstream.checksum.fl_str_mv acdadb8bbf2de9dfd21f03f5db44a1c6
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)
repository.mail.fl_str_mv bibl@ipen.br
_version_ 1767254249480126464