Performance analysis of UO2-SiC fuel under normal conditions

Detalhes bibliográficos
Autor(a) principal: GOMES, DANIEL de S.
Data de Publicação: 2020
Outros Autores: SILVA, ANTONIO T. e, INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
Tipo de documento: Artigo de conferência
Título da fonte: Repositório Institucional do IPEN
Texto Completo: http://repositorio.ipen.br/handle/123456789/30711
Resumo: This study aims to investigate a fuel mixture of silicon carbide (SiC) and uranium dioxide (UO2) and analyze performance when this fuel applies to light-water reactors (LWRs). Utilization of the licensing code, FRAPCON, with UO2 helped to determine the fuel response under normal conditions initially. High thermal conductivity could permit the use of UO2-10 vol% SiC fuel, showing thermal conductivity values that are far superior to the UO2 alone, exceeding 50% at 900 ??C. Ultimately, the formulation should reduce gaseous fission products, avoid fuel cracking, and improve safety margins. SiC has excellent physical properties such as chemical stability, a cross-section with low absorption, irradiation resistance, and a higher melting point. There are some benefits for fuels that use carbon composites such as UO2-carbon nanotube (CNT), and UO2-diamonds. The pellets containing fractions of the carbon limit the amount of fissile U-235 and require additional enrichment to produce the same energy. In the past, there have been various attempts to increase the thermal conductivity of UO2. High conductivity is present in uranium nitride (UN), uranium carbide (UC), and UO2 mixed with beryllium oxide (BeO). The production method of UO2-SiC fuels should include the spark plasma sintering (SPS) technique. Advantages of SPS include a lower manufacturing temperature of 1050??C, better results, and reduced processing time of 30 s. SPS can help produce more tolerant fuels, such as UO2-SiC, UO2-carbon nanotube, and diamond powder dispersion in the UO2 matrix. The thermal conductivity of SiC can decrease substantially under irradiation. UO2-diamond has some drawbacks because of graphitization phenomena.
id IPEN_d5c1ee5f1c5cea1276eaf0d1cf20ffad
oai_identifier_str oai:repositorio.ipen.br:123456789/30711
network_acronym_str IPEN
network_name_str Repositório Institucional do IPEN
repository_id_str 4510
spelling 2020-01-15T17:17:39Z2020-01-15T17:17:39ZOctober 21-25, 2019http://repositorio.ipen.br/handle/123456789/30711This study aims to investigate a fuel mixture of silicon carbide (SiC) and uranium dioxide (UO2) and analyze performance when this fuel applies to light-water reactors (LWRs). Utilization of the licensing code, FRAPCON, with UO2 helped to determine the fuel response under normal conditions initially. High thermal conductivity could permit the use of UO2-10 vol% SiC fuel, showing thermal conductivity values that are far superior to the UO2 alone, exceeding 50% at 900 ??C. Ultimately, the formulation should reduce gaseous fission products, avoid fuel cracking, and improve safety margins. SiC has excellent physical properties such as chemical stability, a cross-section with low absorption, irradiation resistance, and a higher melting point. There are some benefits for fuels that use carbon composites such as UO2-carbon nanotube (CNT), and UO2-diamonds. The pellets containing fractions of the carbon limit the amount of fissile U-235 and require additional enrichment to produce the same energy. In the past, there have been various attempts to increase the thermal conductivity of UO2. High conductivity is present in uranium nitride (UN), uranium carbide (UC), and UO2 mixed with beryllium oxide (BeO). The production method of UO2-SiC fuels should include the spark plasma sintering (SPS) technique. Advantages of SPS include a lower manufacturing temperature of 1050??C, better results, and reduced processing time of 30 s. SPS can help produce more tolerant fuels, such as UO2-SiC, UO2-carbon nanotube, and diamond powder dispersion in the UO2 matrix. The thermal conductivity of SiC can decrease substantially under irradiation. UO2-diamond has some drawbacks because of graphitization phenomena.Submitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2020-01-15T17:17:39Z No. of bitstreams: 1 26364.pdf: 568632 bytes, checksum: c752b61918f7771a9dc5de465f5376c6 (MD5)Made available in DSpace on 2020-01-15T17:17:39Z (GMT). No. of bitstreams: 1 26364.pdf: 568632 bytes, checksum: c752b61918f7771a9dc5de465f5376c6 (MD5)5056-5069Associa????o Brasileira de Energia Nuclearf codesmixturesnuclear fuelsperformancephysical propertiesplasmapwr type reactorssilicon carbidessinteringthermal conductivitythermal expansionuranium dioxidewater cooled reactorsPerformance analysis of UO2-SiC fuel under normal conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de JaneiroSantos, SP76701085600600GOMES, DANIEL de S.SILVA, ANTONIO T. eINTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN263642019SILVA, ANTONIO T. eGOMES, DANIEL de S.20-01Proceedings10857670SILVA, ANTONIO T. e:1085:420:NGOMES, DANIEL de S.:7670:420:SORIGINAL26364.pdf26364.pdfapplication/pdf568632http://repositorio.ipen.br/bitstream/123456789/30711/1/26364.pdfc752b61918f7771a9dc5de465f5376c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/30711/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/307112020-04-12 21:37:49.118oai:repositorio.ipen.br:123456789/30711Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102020-04-12T21:37:49Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false
dc.title.pt_BR.fl_str_mv Performance analysis of UO2-SiC fuel under normal conditions
title Performance analysis of UO2-SiC fuel under normal conditions
spellingShingle Performance analysis of UO2-SiC fuel under normal conditions
GOMES, DANIEL de S.
f codes
mixtures
nuclear fuels
performance
physical properties
plasma
pwr type reactors
silicon carbides
sintering
thermal conductivity
thermal expansion
uranium dioxide
water cooled reactors
title_short Performance analysis of UO2-SiC fuel under normal conditions
title_full Performance analysis of UO2-SiC fuel under normal conditions
title_fullStr Performance analysis of UO2-SiC fuel under normal conditions
title_full_unstemmed Performance analysis of UO2-SiC fuel under normal conditions
title_sort Performance analysis of UO2-SiC fuel under normal conditions
author GOMES, DANIEL de S.
author_facet GOMES, DANIEL de S.
SILVA, ANTONIO T. e
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author_role author
author2 SILVA, ANTONIO T. e
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author2_role author
author
dc.contributor.author.fl_str_mv GOMES, DANIEL de S.
SILVA, ANTONIO T. e
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
dc.subject.por.fl_str_mv f codes
mixtures
nuclear fuels
performance
physical properties
plasma
pwr type reactors
silicon carbides
sintering
thermal conductivity
thermal expansion
uranium dioxide
water cooled reactors
topic f codes
mixtures
nuclear fuels
performance
physical properties
plasma
pwr type reactors
silicon carbides
sintering
thermal conductivity
thermal expansion
uranium dioxide
water cooled reactors
description This study aims to investigate a fuel mixture of silicon carbide (SiC) and uranium dioxide (UO2) and analyze performance when this fuel applies to light-water reactors (LWRs). Utilization of the licensing code, FRAPCON, with UO2 helped to determine the fuel response under normal conditions initially. High thermal conductivity could permit the use of UO2-10 vol% SiC fuel, showing thermal conductivity values that are far superior to the UO2 alone, exceeding 50% at 900 ??C. Ultimately, the formulation should reduce gaseous fission products, avoid fuel cracking, and improve safety margins. SiC has excellent physical properties such as chemical stability, a cross-section with low absorption, irradiation resistance, and a higher melting point. There are some benefits for fuels that use carbon composites such as UO2-carbon nanotube (CNT), and UO2-diamonds. The pellets containing fractions of the carbon limit the amount of fissile U-235 and require additional enrichment to produce the same energy. In the past, there have been various attempts to increase the thermal conductivity of UO2. High conductivity is present in uranium nitride (UN), uranium carbide (UC), and UO2 mixed with beryllium oxide (BeO). The production method of UO2-SiC fuels should include the spark plasma sintering (SPS) technique. Advantages of SPS include a lower manufacturing temperature of 1050??C, better results, and reduced processing time of 30 s. SPS can help produce more tolerant fuels, such as UO2-SiC, UO2-carbon nanotube, and diamond powder dispersion in the UO2 matrix. The thermal conductivity of SiC can decrease substantially under irradiation. UO2-diamond has some drawbacks because of graphitization phenomena.
publishDate 2020
dc.date.evento.pt_BR.fl_str_mv October 21-25, 2019
dc.date.accessioned.fl_str_mv 2020-01-15T17:17:39Z
dc.date.available.fl_str_mv 2020-01-15T17:17:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ipen.br/handle/123456789/30711
url http://repositorio.ipen.br/handle/123456789/30711
dc.relation.authority.fl_str_mv 7670
1085
dc.relation.confidence.fl_str_mv 600
600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5056-5069
dc.coverage.pt_BR.fl_str_mv I
dc.publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IPEN
instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron:IPEN
instname_str Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron_str IPEN
institution IPEN
reponame_str Repositório Institucional do IPEN
collection Repositório Institucional do IPEN
bitstream.url.fl_str_mv http://repositorio.ipen.br/bitstream/123456789/30711/1/26364.pdf
http://repositorio.ipen.br/bitstream/123456789/30711/2/license.txt
bitstream.checksum.fl_str_mv c752b61918f7771a9dc5de465f5376c6
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)
repository.mail.fl_str_mv bibl@ipen.br
_version_ 1767254250592665600