Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems

Detalhes bibliográficos
Autor(a) principal: ALMEIDA, RAFAEL S.P.
Data de Publicação: 2020
Outros Autores: ROCHA, MARCELO S., INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
Tipo de documento: Artigo de conferência
Título da fonte: Repositório Institucional do IPEN
Texto Completo: http://repositorio.ipen.br/handle/123456789/30701
Resumo: In this study the effects of Fluid-structure Interaction during hydraulic transients, more precisely water hammer events, in fluid transport systems are investigated. For this purpose, a numerical model was developed to simulate the effects of Fluid-structure Interaction in a system composed of a reservoir with upstream constant level, a straight pipe and a valve coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from the fluid to the structure associated with pressure waves and their effects, that is, the efforts and displacements generated, is taken into account. The Method of Characteristics is used for solving the hyperbolic partial differential equations system, associated with finite differences and linear interpolations procedures. Three coupling mechanisms are modeled: Friction, Poisson, and junction coupling. The proposed numerical procedure is validated by simulation of a benchmark problem and compared to analytical solutions found in the literature. The results indicated that the model is able to reproduce the main effects Fluid-structure Interaction during hydraulic transients in a pipe conveying fluids. List of symbols A - cross-sectional area, m2 c - classical wave speed, celerity, m/s c?? - FSI wave speed, celerity, m/s D - inner diameter of pipe, m E - Young modulus of pipe wall, Pa e - pipe wall thickness, m FSI - Fluid-Structure Interaction G - shear modulus of pipe wall material, Pa H - pressure head, m K - fluid bulk modulus, Pa L - length, m MOC - Method of Characteristics P - pressure, Pa R - inner radius of pipe, m T - period, s t - time, s u - pipe displacement, m u?? - pipe velocity, m/s V - cross-sectional fluid velocity, m/s x - axial coordinate, m g - constant, m/s ???? - Poisson ratio
id IPEN_f711d4342a28e6f913dbc0b8a34eb182
oai_identifier_str oai:repositorio.ipen.br:123456789/30701
network_acronym_str IPEN
network_name_str Repositório Institucional do IPEN
repository_id_str 4510
spelling 2020-01-15T14:23:56Z2020-01-15T14:23:56ZOctober 21-25, 2019http://repositorio.ipen.br/handle/123456789/307010000-0003-2445-1298In this study the effects of Fluid-structure Interaction during hydraulic transients, more precisely water hammer events, in fluid transport systems are investigated. For this purpose, a numerical model was developed to simulate the effects of Fluid-structure Interaction in a system composed of a reservoir with upstream constant level, a straight pipe and a valve coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from the fluid to the structure associated with pressure waves and their effects, that is, the efforts and displacements generated, is taken into account. The Method of Characteristics is used for solving the hyperbolic partial differential equations system, associated with finite differences and linear interpolations procedures. Three coupling mechanisms are modeled: Friction, Poisson, and junction coupling. The proposed numerical procedure is validated by simulation of a benchmark problem and compared to analytical solutions found in the literature. The results indicated that the model is able to reproduce the main effects Fluid-structure Interaction during hydraulic transients in a pipe conveying fluids. List of symbols A - cross-sectional area, m2 c - classical wave speed, celerity, m/s c?? - FSI wave speed, celerity, m/s D - inner diameter of pipe, m E - Young modulus of pipe wall, Pa e - pipe wall thickness, m FSI - Fluid-Structure Interaction G - shear modulus of pipe wall material, Pa H - pressure head, m K - fluid bulk modulus, Pa L - length, m MOC - Method of Characteristics P - pressure, Pa R - inner radius of pipe, m T - period, s t - time, s u - pipe displacement, m u?? - pipe velocity, m/s V - cross-sectional fluid velocity, m/s x - axial coordinate, m g - constant, m/s ???? - Poisson ratioSubmitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2020-01-15T14:23:56Z No. of bitstreams: 1 26351.pdf: 1113396 bytes, checksum: 1fd77bfe4c0e62c22bc600a76f67d21d (MD5)Made available in DSpace on 2020-01-15T14:23:56Z (GMT). No. of bitstreams: 1 26351.pdf: 1113396 bytes, checksum: 1fd77bfe4c0e62c22bc600a76f67d21d (MD5)4731-4742Associa????o Brasileira de Energia Nuclearbenchmarkscomputerized simulationcouplingfinite difference methodfluid flowfluid-structure interactionsfrictionhydraulicsnuclear poisonspartial differential equationspipestransientswater hammerNumerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectINACIRio de JaneiroSantos, SP143147992600600ALMEIDA, RAFAEL S.P.ROCHA, MARCELO S.INTERNATIONAL NUCLEAR ATLANTIC CONFERENCEinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN263512019ROCHA, MARCELO S.ALMEIDA, RAFAEL S.P.20-01Proceedings799214314ROCHA, MARCELO S.:7992:420:NALMEIDA, RAFAEL S.P.:14314:420:SORIGINAL26351.pdf26351.pdfapplication/pdf1113396http://repositorio.ipen.br/bitstream/123456789/30701/1/26351.pdf1fd77bfe4c0e62c22bc600a76f67d21dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/30701/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/307012020-04-10 00:19:21.784oai:repositorio.ipen.br:123456789/30701Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102020-04-10T00:19:21Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false
dc.title.pt_BR.fl_str_mv Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
title Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
spellingShingle Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
ALMEIDA, RAFAEL S.P.
benchmarks
computerized simulation
coupling
finite difference method
fluid flow
fluid-structure interactions
friction
hydraulics
nuclear poisons
partial differential equations
pipes
transients
water hammer
title_short Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
title_full Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
title_fullStr Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
title_full_unstemmed Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
title_sort Numerical model for calculation of hydraulic transiente and fluid-structure interaction in fluid transport systems
author ALMEIDA, RAFAEL S.P.
author_facet ALMEIDA, RAFAEL S.P.
ROCHA, MARCELO S.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author_role author
author2 ROCHA, MARCELO S.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
author2_role author
author
dc.contributor.author.fl_str_mv ALMEIDA, RAFAEL S.P.
ROCHA, MARCELO S.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
dc.subject.por.fl_str_mv benchmarks
computerized simulation
coupling
finite difference method
fluid flow
fluid-structure interactions
friction
hydraulics
nuclear poisons
partial differential equations
pipes
transients
water hammer
topic benchmarks
computerized simulation
coupling
finite difference method
fluid flow
fluid-structure interactions
friction
hydraulics
nuclear poisons
partial differential equations
pipes
transients
water hammer
description In this study the effects of Fluid-structure Interaction during hydraulic transients, more precisely water hammer events, in fluid transport systems are investigated. For this purpose, a numerical model was developed to simulate the effects of Fluid-structure Interaction in a system composed of a reservoir with upstream constant level, a straight pipe and a valve coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from the fluid to the structure associated with pressure waves and their effects, that is, the efforts and displacements generated, is taken into account. The Method of Characteristics is used for solving the hyperbolic partial differential equations system, associated with finite differences and linear interpolations procedures. Three coupling mechanisms are modeled: Friction, Poisson, and junction coupling. The proposed numerical procedure is validated by simulation of a benchmark problem and compared to analytical solutions found in the literature. The results indicated that the model is able to reproduce the main effects Fluid-structure Interaction during hydraulic transients in a pipe conveying fluids. List of symbols A - cross-sectional area, m2 c - classical wave speed, celerity, m/s c?? - FSI wave speed, celerity, m/s D - inner diameter of pipe, m E - Young modulus of pipe wall, Pa e - pipe wall thickness, m FSI - Fluid-Structure Interaction G - shear modulus of pipe wall material, Pa H - pressure head, m K - fluid bulk modulus, Pa L - length, m MOC - Method of Characteristics P - pressure, Pa R - inner radius of pipe, m T - period, s t - time, s u - pipe displacement, m u?? - pipe velocity, m/s V - cross-sectional fluid velocity, m/s x - axial coordinate, m g - constant, m/s ???? - Poisson ratio
publishDate 2020
dc.date.evento.pt_BR.fl_str_mv October 21-25, 2019
dc.date.accessioned.fl_str_mv 2020-01-15T14:23:56Z
dc.date.available.fl_str_mv 2020-01-15T14:23:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ipen.br/handle/123456789/30701
dc.identifier.orcid.pt_BR.fl_str_mv 0000-0003-2445-1298
url http://repositorio.ipen.br/handle/123456789/30701
identifier_str_mv 0000-0003-2445-1298
dc.relation.authority.fl_str_mv 14314
7992
dc.relation.confidence.fl_str_mv 600
600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4731-4742
dc.coverage.pt_BR.fl_str_mv I
dc.publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
publisher.none.fl_str_mv Associa????o Brasileira de Energia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IPEN
instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron:IPEN
instname_str Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron_str IPEN
institution IPEN
reponame_str Repositório Institucional do IPEN
collection Repositório Institucional do IPEN
bitstream.url.fl_str_mv http://repositorio.ipen.br/bitstream/123456789/30701/1/26351.pdf
http://repositorio.ipen.br/bitstream/123456789/30701/2/license.txt
bitstream.checksum.fl_str_mv 1fd77bfe4c0e62c22bc600a76f67d21d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)
repository.mail.fl_str_mv bibl@ipen.br
_version_ 1767254250544431104