Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Título da fonte: | Repositório Institucional do IPEN |
Texto Completo: | http://repositorio.ipen.br/handle/123456789/27646 |
Resumo: | Polyamides (Nylon-6) are engineering plastic with excellent properties which are useful in several industrial applications and are valued for their high strength and processability. The addition of filler such as diamond coated Carbon Nano Tubes (CNTs) to form molded composites has increased the range of polyamide applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increases the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using sonochemical technique in the presence of cationic surfactant CTAB. These hybrid nanoparticles were characterized using TEM analysis. The nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers that were tested for their mechanical & thermal properties (e.g. tensile and Differential Scanning Calorimetry). These composites were further exposed to the electron-beam (160 KGy, 132 KGy and 99 KGy) using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air and tested for their thermal and mechanical properties. The ultimate tensile strength were found to be 521 MPa, 690 MPa and 425 MPa for radiated (99 KGy,132 KGy and 160 KGy) DN/CNTs/Nylon-6 single fibers as compared to 346 MPa for DN/CNTs/Nylon-6 single fibers without irradiation and 240 MPa for neat Nylon-6 single fibers respectively. Differential Scanning Calorimetry (DSC) analysis results were showed that degree of cure was increased because of cross-linking which was expected at high electron-beam radiation dose. |
id |
IPEN_fae7e5c8e299b83ebe9081936731197e |
---|---|
oai_identifier_str |
oai:repositorio.ipen.br:123456789/27646 |
network_acronym_str |
IPEN |
network_name_str |
Repositório Institucional do IPEN |
repository_id_str |
4510 |
spelling |
2017-07-07T11:31:18Z2017-07-07T11:31:18ZOctober 21-24, 2013http://repositorio.ipen.br/handle/123456789/27646Polyamides (Nylon-6) are engineering plastic with excellent properties which are useful in several industrial applications and are valued for their high strength and processability. The addition of filler such as diamond coated Carbon Nano Tubes (CNTs) to form molded composites has increased the range of polyamide applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increases the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using sonochemical technique in the presence of cationic surfactant CTAB. These hybrid nanoparticles were characterized using TEM analysis. The nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers that were tested for their mechanical & thermal properties (e.g. tensile and Differential Scanning Calorimetry). These composites were further exposed to the electron-beam (160 KGy, 132 KGy and 99 KGy) using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air and tested for their thermal and mechanical properties. The ultimate tensile strength were found to be 521 MPa, 690 MPa and 425 MPa for radiated (99 KGy,132 KGy and 160 KGy) DN/CNTs/Nylon-6 single fibers as compared to 346 MPa for DN/CNTs/Nylon-6 single fibers without irradiation and 240 MPa for neat Nylon-6 single fibers respectively. Differential Scanning Calorimetry (DSC) analysis results were showed that degree of cure was increased because of cross-linking which was expected at high electron-beam radiation dose.Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2017-07-07T11:31:18Z No. of bitstreams: 1 23873.pdf: 615444 bytes, checksum: 322a4aaf6f64df2c208561c09f049534 (MD5)Made available in DSpace on 2017-07-07T11:31:18Z (GMT). No. of bitstreams: 1 23873.pdf: 615444 bytes, checksum: 322a4aaf6f64df2c208561c09f049534 (MD5)Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiberinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectIWichita, KS, USAIMAM, MUHAMMAD A.GOMES, M.G.MOURA, ESPERIDIANA A.B.JEELANI, SHAIKRANGARI, VIJAY K.SAMPE Techinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN238732013GOMES, M.G.MOURA, ESPERIDIANA A.B.17-07Proceedings1045MOURA, ESPERIDIANA A.B.:1045:740:NORIGINAL23873.pdf23873.pdfapplication/pdf615444http://repositorio.ipen.br/bitstream/123456789/27646/1/23873.pdf322a4aaf6f64df2c208561c09f049534MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/27646/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/276462017-07-07 11:31:18.721oai:repositorio.ipen.br:123456789/27646Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102017-07-07T11:31:18Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false |
dc.title.pt_BR.fl_str_mv |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
title |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
spellingShingle |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber IMAM, MUHAMMAD A. |
title_short |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
title_full |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
title_fullStr |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
title_full_unstemmed |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
title_sort |
Effect of electron-beam irradiation on Nylon-6/diamond coated CNTS composite fiber |
author |
IMAM, MUHAMMAD A. |
author_facet |
IMAM, MUHAMMAD A. GOMES, M.G. MOURA, ESPERIDIANA A.B. JEELANI, SHAIK RANGARI, VIJAY K. SAMPE Tech |
author_role |
author |
author2 |
GOMES, M.G. MOURA, ESPERIDIANA A.B. JEELANI, SHAIK RANGARI, VIJAY K. SAMPE Tech |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
IMAM, MUHAMMAD A. GOMES, M.G. MOURA, ESPERIDIANA A.B. JEELANI, SHAIK RANGARI, VIJAY K. SAMPE Tech |
description |
Polyamides (Nylon-6) are engineering plastic with excellent properties which are useful in several industrial applications and are valued for their high strength and processability. The addition of filler such as diamond coated Carbon Nano Tubes (CNTs) to form molded composites has increased the range of polyamide applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increases the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using sonochemical technique in the presence of cationic surfactant CTAB. These hybrid nanoparticles were characterized using TEM analysis. The nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers that were tested for their mechanical & thermal properties (e.g. tensile and Differential Scanning Calorimetry). These composites were further exposed to the electron-beam (160 KGy, 132 KGy and 99 KGy) using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air and tested for their thermal and mechanical properties. The ultimate tensile strength were found to be 521 MPa, 690 MPa and 425 MPa for radiated (99 KGy,132 KGy and 160 KGy) DN/CNTs/Nylon-6 single fibers as compared to 346 MPa for DN/CNTs/Nylon-6 single fibers without irradiation and 240 MPa for neat Nylon-6 single fibers respectively. Differential Scanning Calorimetry (DSC) analysis results were showed that degree of cure was increased because of cross-linking which was expected at high electron-beam radiation dose. |
publishDate |
2017 |
dc.date.evento.pt_BR.fl_str_mv |
October 21-24, 2013 |
dc.date.accessioned.fl_str_mv |
2017-07-07T11:31:18Z |
dc.date.available.fl_str_mv |
2017-07-07T11:31:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ipen.br/handle/123456789/27646 |
url |
http://repositorio.ipen.br/handle/123456789/27646 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.coverage.pt_BR.fl_str_mv |
I |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do IPEN instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN) instacron:IPEN |
instname_str |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
instacron_str |
IPEN |
institution |
IPEN |
reponame_str |
Repositório Institucional do IPEN |
collection |
Repositório Institucional do IPEN |
bitstream.url.fl_str_mv |
http://repositorio.ipen.br/bitstream/123456789/27646/1/23873.pdf http://repositorio.ipen.br/bitstream/123456789/27646/2/license.txt |
bitstream.checksum.fl_str_mv |
322a4aaf6f64df2c208561c09f049534 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
repository.mail.fl_str_mv |
bibl@ipen.br |
_version_ |
1767254241811890176 |