A novel congestion control framework for delay and disruption tolerant networks

Detalhes bibliográficos
Autor(a) principal: Aloizio Pereira da Silva
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3405
Resumo: Delay and Disruption Tolerant Networks (DTNs) are networks that experience frequent and long-lived connectivity disruptions. Unlike traditional networks, such as TCP/IP Internet, DTNs are often subject to high latency caused by very long propagation delays (e.g. interplanetary communication) and/or intermittent connectivity. In DTNs there is no guarantee of end-to-end connectivity between source and destination. Such distinct features pose a number of technical challenges in designing core network functions such as routing and congestion control mechanisms. Detecting and dealing with congestion in DTNs is an important and challenging problem. Existing DTN congestion control mechanisms typically try to use some network global information or they are designed to operate in a particular scenario and they depend on forwarding strategy, for example, replication forwarding. As a result, existing DTN congestion control mechanisms do not have good performance when they are applied in different scenarios with different routing protocols. In this thesis, we first review important challenges of DTNs and survey the existing congestion control mechanisms of this domain. Furthermore, we provide a taxonomy of existing DTN congestion control mechanisms and discusses their strengths and weaknesses in the context of their assumptions and applicability in DTN applications. We also present a quantitative analysis of some DTN congestion control mechanisms to evaluate how they behave in deep space communication scenario since they were designed to operate at terrestrial DTN. We extensively evaluated these mechanisms using two different applications and three different routing protocols and mobility patterns. The evaluation results show that the selected mechanisms poorly perform in deep space scenario. Therefore, in view of DTN characteristics, to study new congestion controls and better undersand the impact of congestion in DTN we modeled DTN congestion problem using percolation theory. We formulate the DTN congestion problem as a percolation process resulting in a percolation model that is simple and easy to derive. Another important feature of the proposed percolation model is the fact that instead of requiring global information about the whole network, it relies exclusively on local information, i.e., information related to a node and its neighboring nodes. The principal advantage of our mathematical model is to provide a fast way of having an idea of the system's performance being modeled and allow us to validate either simulation or realistic experiments. Consequently the proposed model can be used to predict and control congestion in DTNs. Being aware that far from the traditional network, DTN is a new kind of network derived by deep space communication and as congestion control is an important factor that directly affects network performance. The development of DTN must rely on the perfect congestion control mechanism to ensure reliability, stability and extensiveness of the network. In order to enhance the reliability of data delivery in such challenging network, this thesis proposes DTN-Learning, an adaptive and autonomous congestion aware framework that mitigates the congestion by using Reinforcement Learning. This allows the network nodes to adapt their behavior on-line in a real environment. It is general and can easily be combined with existing schemes for local control. Preliminary results show that using our adaptive approach, the network node exhibits a more accurate behavior, increasing the delivery ratio and decreasing drop ratio, as compared to approaches that do not use learning. This mitigates congestion phenomena observed in non-adaptive local congestion control mechanisms and helps the network to reach high performance faster.
id ITA_42511b69b7d2912eb080542ff543cbe7
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:3405
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling A novel congestion control framework for delay and disruption tolerant networksComunicação sem fioProcessamento de sinaisAtrasoIntermitênciaModelos matemáticosRedes de comunicaçãoEngenharia eletrônicaComputaçãoDelay and Disruption Tolerant Networks (DTNs) are networks that experience frequent and long-lived connectivity disruptions. Unlike traditional networks, such as TCP/IP Internet, DTNs are often subject to high latency caused by very long propagation delays (e.g. interplanetary communication) and/or intermittent connectivity. In DTNs there is no guarantee of end-to-end connectivity between source and destination. Such distinct features pose a number of technical challenges in designing core network functions such as routing and congestion control mechanisms. Detecting and dealing with congestion in DTNs is an important and challenging problem. Existing DTN congestion control mechanisms typically try to use some network global information or they are designed to operate in a particular scenario and they depend on forwarding strategy, for example, replication forwarding. As a result, existing DTN congestion control mechanisms do not have good performance when they are applied in different scenarios with different routing protocols. In this thesis, we first review important challenges of DTNs and survey the existing congestion control mechanisms of this domain. Furthermore, we provide a taxonomy of existing DTN congestion control mechanisms and discusses their strengths and weaknesses in the context of their assumptions and applicability in DTN applications. We also present a quantitative analysis of some DTN congestion control mechanisms to evaluate how they behave in deep space communication scenario since they were designed to operate at terrestrial DTN. We extensively evaluated these mechanisms using two different applications and three different routing protocols and mobility patterns. The evaluation results show that the selected mechanisms poorly perform in deep space scenario. Therefore, in view of DTN characteristics, to study new congestion controls and better undersand the impact of congestion in DTN we modeled DTN congestion problem using percolation theory. We formulate the DTN congestion problem as a percolation process resulting in a percolation model that is simple and easy to derive. Another important feature of the proposed percolation model is the fact that instead of requiring global information about the whole network, it relies exclusively on local information, i.e., information related to a node and its neighboring nodes. The principal advantage of our mathematical model is to provide a fast way of having an idea of the system's performance being modeled and allow us to validate either simulation or realistic experiments. Consequently the proposed model can be used to predict and control congestion in DTNs. Being aware that far from the traditional network, DTN is a new kind of network derived by deep space communication and as congestion control is an important factor that directly affects network performance. The development of DTN must rely on the perfect congestion control mechanism to ensure reliability, stability and extensiveness of the network. In order to enhance the reliability of data delivery in such challenging network, this thesis proposes DTN-Learning, an adaptive and autonomous congestion aware framework that mitigates the congestion by using Reinforcement Learning. This allows the network nodes to adapt their behavior on-line in a real environment. It is general and can easily be combined with existing schemes for local control. Preliminary results show that using our adaptive approach, the network node exhibits a more accurate behavior, increasing the delivery ratio and decreasing drop ratio, as compared to approaches that do not use learning. This mitigates congestion phenomena observed in non-adaptive local congestion control mechanisms and helps the network to reach high performance faster.Instituto Tecnológico de AeronáuticaCelso Massaki HirataKatia ObraczkaAloizio Pereira da Silva2015-08-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3405reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:05:10Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:3405http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:41:52.39Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv A novel congestion control framework for delay and disruption tolerant networks
title A novel congestion control framework for delay and disruption tolerant networks
spellingShingle A novel congestion control framework for delay and disruption tolerant networks
Aloizio Pereira da Silva
Comunicação sem fio
Processamento de sinais
Atraso
Intermitência
Modelos matemáticos
Redes de comunicação
Engenharia eletrônica
Computação
title_short A novel congestion control framework for delay and disruption tolerant networks
title_full A novel congestion control framework for delay and disruption tolerant networks
title_fullStr A novel congestion control framework for delay and disruption tolerant networks
title_full_unstemmed A novel congestion control framework for delay and disruption tolerant networks
title_sort A novel congestion control framework for delay and disruption tolerant networks
author Aloizio Pereira da Silva
author_facet Aloizio Pereira da Silva
author_role author
dc.contributor.none.fl_str_mv Celso Massaki Hirata
Katia Obraczka
dc.contributor.author.fl_str_mv Aloizio Pereira da Silva
dc.subject.por.fl_str_mv Comunicação sem fio
Processamento de sinais
Atraso
Intermitência
Modelos matemáticos
Redes de comunicação
Engenharia eletrônica
Computação
topic Comunicação sem fio
Processamento de sinais
Atraso
Intermitência
Modelos matemáticos
Redes de comunicação
Engenharia eletrônica
Computação
dc.description.none.fl_txt_mv Delay and Disruption Tolerant Networks (DTNs) are networks that experience frequent and long-lived connectivity disruptions. Unlike traditional networks, such as TCP/IP Internet, DTNs are often subject to high latency caused by very long propagation delays (e.g. interplanetary communication) and/or intermittent connectivity. In DTNs there is no guarantee of end-to-end connectivity between source and destination. Such distinct features pose a number of technical challenges in designing core network functions such as routing and congestion control mechanisms. Detecting and dealing with congestion in DTNs is an important and challenging problem. Existing DTN congestion control mechanisms typically try to use some network global information or they are designed to operate in a particular scenario and they depend on forwarding strategy, for example, replication forwarding. As a result, existing DTN congestion control mechanisms do not have good performance when they are applied in different scenarios with different routing protocols. In this thesis, we first review important challenges of DTNs and survey the existing congestion control mechanisms of this domain. Furthermore, we provide a taxonomy of existing DTN congestion control mechanisms and discusses their strengths and weaknesses in the context of their assumptions and applicability in DTN applications. We also present a quantitative analysis of some DTN congestion control mechanisms to evaluate how they behave in deep space communication scenario since they were designed to operate at terrestrial DTN. We extensively evaluated these mechanisms using two different applications and three different routing protocols and mobility patterns. The evaluation results show that the selected mechanisms poorly perform in deep space scenario. Therefore, in view of DTN characteristics, to study new congestion controls and better undersand the impact of congestion in DTN we modeled DTN congestion problem using percolation theory. We formulate the DTN congestion problem as a percolation process resulting in a percolation model that is simple and easy to derive. Another important feature of the proposed percolation model is the fact that instead of requiring global information about the whole network, it relies exclusively on local information, i.e., information related to a node and its neighboring nodes. The principal advantage of our mathematical model is to provide a fast way of having an idea of the system's performance being modeled and allow us to validate either simulation or realistic experiments. Consequently the proposed model can be used to predict and control congestion in DTNs. Being aware that far from the traditional network, DTN is a new kind of network derived by deep space communication and as congestion control is an important factor that directly affects network performance. The development of DTN must rely on the perfect congestion control mechanism to ensure reliability, stability and extensiveness of the network. In order to enhance the reliability of data delivery in such challenging network, this thesis proposes DTN-Learning, an adaptive and autonomous congestion aware framework that mitigates the congestion by using Reinforcement Learning. This allows the network nodes to adapt their behavior on-line in a real environment. It is general and can easily be combined with existing schemes for local control. Preliminary results show that using our adaptive approach, the network node exhibits a more accurate behavior, increasing the delivery ratio and decreasing drop ratio, as compared to approaches that do not use learning. This mitigates congestion phenomena observed in non-adaptive local congestion control mechanisms and helps the network to reach high performance faster.
description Delay and Disruption Tolerant Networks (DTNs) are networks that experience frequent and long-lived connectivity disruptions. Unlike traditional networks, such as TCP/IP Internet, DTNs are often subject to high latency caused by very long propagation delays (e.g. interplanetary communication) and/or intermittent connectivity. In DTNs there is no guarantee of end-to-end connectivity between source and destination. Such distinct features pose a number of technical challenges in designing core network functions such as routing and congestion control mechanisms. Detecting and dealing with congestion in DTNs is an important and challenging problem. Existing DTN congestion control mechanisms typically try to use some network global information or they are designed to operate in a particular scenario and they depend on forwarding strategy, for example, replication forwarding. As a result, existing DTN congestion control mechanisms do not have good performance when they are applied in different scenarios with different routing protocols. In this thesis, we first review important challenges of DTNs and survey the existing congestion control mechanisms of this domain. Furthermore, we provide a taxonomy of existing DTN congestion control mechanisms and discusses their strengths and weaknesses in the context of their assumptions and applicability in DTN applications. We also present a quantitative analysis of some DTN congestion control mechanisms to evaluate how they behave in deep space communication scenario since they were designed to operate at terrestrial DTN. We extensively evaluated these mechanisms using two different applications and three different routing protocols and mobility patterns. The evaluation results show that the selected mechanisms poorly perform in deep space scenario. Therefore, in view of DTN characteristics, to study new congestion controls and better undersand the impact of congestion in DTN we modeled DTN congestion problem using percolation theory. We formulate the DTN congestion problem as a percolation process resulting in a percolation model that is simple and easy to derive. Another important feature of the proposed percolation model is the fact that instead of requiring global information about the whole network, it relies exclusively on local information, i.e., information related to a node and its neighboring nodes. The principal advantage of our mathematical model is to provide a fast way of having an idea of the system's performance being modeled and allow us to validate either simulation or realistic experiments. Consequently the proposed model can be used to predict and control congestion in DTNs. Being aware that far from the traditional network, DTN is a new kind of network derived by deep space communication and as congestion control is an important factor that directly affects network performance. The development of DTN must rely on the perfect congestion control mechanism to ensure reliability, stability and extensiveness of the network. In order to enhance the reliability of data delivery in such challenging network, this thesis proposes DTN-Learning, an adaptive and autonomous congestion aware framework that mitigates the congestion by using Reinforcement Learning. This allows the network nodes to adapt their behavior on-line in a real environment. It is general and can easily be combined with existing schemes for local control. Preliminary results show that using our adaptive approach, the network node exhibits a more accurate behavior, increasing the delivery ratio and decreasing drop ratio, as compared to approaches that do not use learning. This mitigates congestion phenomena observed in non-adaptive local congestion control mechanisms and helps the network to reach high performance faster.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3405
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3405
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Comunicação sem fio
Processamento de sinais
Atraso
Intermitência
Modelos matemáticos
Redes de comunicação
Engenharia eletrônica
Computação
_version_ 1706809299733315584